首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 388 毫秒
1.
Many everyday tasks require that we use our hands co-operatively. For tasks where both hands are required to perform the same action, a common motor program can be used. But, where each hand must perform a different action, some degree of independent control of each hand is required. In this paper we examine the co-ordination of bimanual movement kinematics in a female patient recovering from brain injury involving anterior regions of the parietal lobe of the right hemisphere, which has resulted in a dense hemianaesthesia of her left arm. A particular focus of this paper is the co-ordination of bimanual movements for reaches executed without visual feedback. Specifically we present new data, which quantify the synchronisation of patient D.B.'s hands by comparing their relative time lag at the start and the end of her bimanual reaches. The results are discussed with particular reference to the role played by limb proprioception in the planning and control of prehension movements.  相似文献   

2.
When both hands perform concurrent goal-directed reaches, they become yoked to one another. To investigate the direction of this coupling (i.e., which hand is yoked to which), the temporal dynamics of bimanual reaches were compared with equivalent-amplitude unimanual reaches. These reaches were to target pairs located on either the left or right sides of space; meaning that in the bimanual condition, one hand's contralateral (more difficult) reach accompanied by the other hand's ipsilateral (easier) reach. By comparing which hand's difficult reach was improved more by the presence of the other hand's easier ipsilateral reach, we were able to demonstrate asymmetries in the coupling. When the cost of bimanual reaching was controlled for the contralateral reaching left hand's performance was improved, suggesting that the left hand is yoked to the right during motor output. In contrast, the right hand showed the greatest improvements for contralateral reaching in terms of reaction time, pointing toward a dominant role for the left hand in the processes prior to movement onset. The results may point toward a mechanism for integrating the unitary system of attention with bimanual coordination.  相似文献   

3.
The goal of the present investigation was to explore the possible expression of hemispheric-specific processing during the planning and execution of a bimanual reaching task. Participants (N = 9) completed 80 bimanual reaching movements (requiring simultaneous, bilateral production of arm movements) to peripherally presented targets while selectively attending to either their left or right hand. Further, targets were presented in spatially compatible (ipsilateral to the aiming limb) and incompatible (contralateral to the aiming limb) response contexts. It was found that the left hand exhibited temporal superiority over the right hand in the response planning phase of bimanual reaching, indicating a left hand/right hemisphere advantage in the preparation of a bimanual response. During response execution, and consistent with the view that interhemispheric processing time (Barthelemy & Boulinguez, 2002) or biomechanical constraints (Carey, Hargreaves, & Goodale, 1996) generate temporal delays, longer movement times were observed in response to spatially incompatible target positions. However, no hemisphere-specific benefit was demonstrated for response execution. Based on these findings, we propose lateralized processing is present at the time of response planning (i.e., left hand/right hemisphere processing advantage); however, lateralized specialization appears to be annulled during dynamic execution of a bimanual reaching task.  相似文献   

4.
Two experiments examined the effects of independent variations in kinetic and kinematic requirements on interlimb coupling during a bimanual task. The goal of the investigation was to provide preliminary evidence regarding one general class of physical variables that constrains discrete bimanual movements. Subjects attempted to execute a smooth unidirectional movement with the left arm, along with a three-segment reversal movement with the right arm. The first experiment manipulated the torque required to produce the reversal action, while movement duration and average angular velocity were held constant for both limbs. Several indications of increased interlimb coupling, due to the kinetic variation, were evident. The converse manipulation was used in the second experiment, with movement time and kinematics (velocity, acceleration) changed independently of joint torque requirements for the reversal limb. No clear effect of kinematics on coupling strength was noted. The results suggest that one variable influencing interlimb attraction toward common spatiotemporal trajectories may be kinetic in nature.  相似文献   

5.
Two experiments examined the effects of independent variations in kinetic and kinematic requirements on interlimb coupling during a bimanual task. The goal of the investigation was to provide preliminary evidence regarding one general class of physical variables that constrains discrete bimanual movements. Subjects attempted to execute a smooth unidirectional movement with the left arm, along with a three-segment reversal movement with the right arm. The first experiment manipulated the torque required to produce the reversal action, while movement duration and average angular velocity were held constant for both limbs. Several indications of increased interlimb coupling, due to the kinetic variation, were evident. The converse manipulation was used in the second experiment, with movement time and kinematics (velocity, acceleration) changed independently of joint torque requirements for the reversal limb. No clear effect of kinematics on coupling strength was noted. The results suggest that one variable influencing interlimb attraction toward common spatiotemporal trajectories may be kinetic in nature.  相似文献   

6.
An asymmetry of attention was observed when subjects attempted to perform concurrent, relatively independent tasks with the two hands: right-handed subjects performed very much better on a dual task which required them to follow the beat of a metronome with the left while tapping as quickly as they could with the right than with the converse arrangement. It is suggested that attentional strategies which have evolved to allow guidance of interdependent skilled bimanual activities are also used when subjects attempt to perform relatively independent concurrent bimanual movements, which are not observed in the naturally occurring motor repertoire. Thus, interactions between hand, hand preference and nature of task are an important factor in dual task performance.  相似文献   

7.
First year after the stroke is essential for motor recovery. The main motor control strategy (i.e., faster movement production at the expense of lower movement accuracy and stability, or greater movement accuracy and stability at the expense of slower movement) selected by poststroke patients during a unilateral speed–accuracy task (SAT) remains unclear. We aimed to investigate the poststroke (12 months after stroke) effects on the trade-off between movement speed and accuracy, and intraindividual variability during a motor performance task. Healthy right-handed men (n = 20; age ∼ 66 years) and right-handed men after ischemic stroke during their post rehabilitation period (n = 20; age ∼ 69 years) were asked to perform a simple reaction task, a maximal velocity performance task and a SAT with the right and left hand, and with the right and left leg. In the hand movement trial, reaction time and movement velocity (Vmax) in the SAT were slower and time to Vmax in the SAT was longer in the poststroke group (P < .01). In the leg movement trial, poststroke participants reached a greater Vmax in the SAT than the healthy participants (P < .01). The greatest poststroke effect on intraindividual variability in movements was found for movement path in the SAT, which was significantly greater in the legs than in the hands. Poststroke patients in the first year after stroke mainly selected an impulsive strategy for speed over hand and leg motor control, but at the expense of lower movement accuracy and greater variability in movement.  相似文献   

8.
Kelso, Southard, and Goodman (1979) and Marteniuk and MacKenzie (1980) have each proposed a different theoretical model for bimanual coordination. In the model of Kelso et al., a close temporal relationship between the hands in a bimanual task is predicted, even when each hand is required to move different distances. In Marteniuk and MacKenzie's model, separate motor commands are issued so that each limb will arrive simultaneously at the specified movement endpoint, leading to low temporal associations between limbs. In most previous work on bimanual coordination, manual aiming tasks with differing constraints have been used by subjects in individual studies. In this study, the usefulness of existing models for predicting performance in a real-world catching task in which the required movement pattern was constrained by ball flight characteristics was examined. E1even university students caught tennis balls with both hands in the following 3 conditions: Condition 1. Ball projected to the right shoulder area (left hand moved a greater distance than the right); Condition 2. Ball projected to center of the chest area, (both hands moved same distance); and Condition 3. Ball projected to left shoulder area (right hand moved a greater distance). Kinematic data (time to peak velocity, movement initiation time) indicating significant cross-correlations between the left and right limbs in all 3 conditions concurred with the data of Kelso et al. (1979) on manual aiming. Timing appeared to be an essential variable coordinating bimanual interceptive actions. Although the limbs moved at different speeds when each was required to move different distances, times to peak velocity showed strong associations, suggesting the presence of a coordinative structure.  相似文献   

9.
The experimenters examine upper limb movement discrimination performance in an arm-raising task for bilateral associations of low-level unilateral performance. On a cue from the experimenter, young adults (n = 23) with no history of shoulder injury raised either their left arm, right arm, or both together in a forward flexion movement until their hand or hands contacted an unseen, adjustable, overhead stop. The participant then judged which of the 5 possible stop positions, in the 12-20 degrees range forward of true vertical, the participant had contacted on the particular trial. Results showed that for the 16 participants whose best performance was in 1 of the unimanual conditions discrimination scores in the bilateral condition were equivalent to those of their worse-performing limb. For the 7 participants whose best discrimination performance was obtained on bimanual arm-raising, scores for the 2 unimanual conditions were equivalently low. Therefore, when a single limb that can perform well operates in conjunction with a limb performing at a lower level, the consequence is lowering the bimanual movement discrimination performance.  相似文献   

10.
Learning a bimanual rhythmic task is explored from the perspective that motor skill acquisition involves the successive reparameterization of a dynamical control structure in the direction of increasing stability, where the intentional process of reparameterization is itself dynamical. Subjects learned to oscillate pendulums held in the right and left hands such that the right hand frequency was twice that of the left (2:1 frequency lock). Over 12 learning sessions of 20 trials each, we interpreted the decreasing fluctuations in the frequency locking to be an index of the increasing concavity of the underlying potential, a measure of stability; the time required to achieve the 2: 1 pattern was interpreted as indexing the relaxation time of an intentional dynamic. Power spectral analyses of the phase velocity ratio exhibited two strategies for acquiring the interlimb movement pattern: (a) adding spectral peaks at integer multiples of the left hand frequency or (b) distributing power across many frequencies in a l/f-like manner. Results are discussed in terms of the promise of a dynamical approach to learning coordinated movements.  相似文献   

11.
Kelso, Southard, and Goodman (1979) and Marteniuk and MacKenzie (1980) have each proposed a different theoretical model for bimanual coordination. In the model of Kelso et al., a close temporal relationship between the hands in a bimanual task is predicted, even when each hand is required to move different distances. In Marteniuk and MacKenzie's model, separate motor commands are issued so that each limb will arrive simultaneously at the specified movement endpoint, leading to low temporal associations between limbs. In most previous work on bimanual coordination, manual aiming tasks with differing constraints have been used by subjects in individual studies. In this study, the usefulness of existing models for predicting performance in a real-world catching task in which the required movement pattern was constrained by ball flight characteristics was examined. Eleven university students caught tennis balls with both hands in the following 3 conditions: Condition 1. Ball projected to the right shoulder area (left hand moved a greater distance than the right); Condition 2. Ball projected to center of the chest area, (both hands moved same distance); and Condition 3. Ball projected to left shoulder area (right hand moved a greater distance). Kinematic data (time to peak velocity, movement initiation time) indicating significant cross-correlations between the left and right limbs in all 3 conditions concurred with the data of Kelso et al. (1979) on manual aiming. Timing appeared to be an essential variable coordinating bimanual interceptive actions. Although the limbs moved at different speeds when each was required to move different distances, times to peak velocity showed strong associations, suggesting the presence of a coordinative structure.  相似文献   

12.
Between-arm performance asymmetry can be seen in different arm movements requiring specific interjoint coordination to generate the desired hand trajectory. In the current investigation, we assessed between-arm asymmetry of shoulder-elbow coordination and its stability in the performance of circular movements. Participants were 16 healthy right-handed university students. The task consisted of performing cyclic circular movements with either the dominant right arm or the nondominant left arm at movement frequencies ranging from 40% of maximum to maximum frequency in steps of 15%. Kinematic analysis of shoulder and elbow motions was performed through an optoelectronic system in the three-dimensional space. Results showed that as movement frequency increased circularity of left arm movements diminished, taking an elliptical shape, becoming significantly different from the right arm at higher movement frequencies. Shoulder-elbow coordination was found to be asymmetric between the two arms across movement frequencies, with lower shoulder-elbow angle coefficients and higher relative phase for the left compared to the right arm. Results also revealed greater variability of left arm movements in all variables assessed, an outcome observed from low to high movement frequencies. From these findings, we propose that specialization of the left cerebral hemisphere for motor control resides in its higher capacity to generate appropriate and stable interjoint coordination leading to the planned hand trajectory.  相似文献   

13.
In bimanual movements the amplitude of each hand's movement often depends on the concurrent amplitude of the other hand's movement such that both amplitudes become similar (amplitude coupling). We tested the hypothesis that the strength of amplitude coupling depends on the tempo of performance of a movement sequence, a hypothesis based on a model of bimanual coordination that holds that cross-talk occurs at the execution level as well as at the programming level. Subjects performed bimanual periodic arm movements on two digitizers. In nine conditions constant small, constant large, and alternating small and large amplitudes of each arm were orthogonally combined. Overall tempo was varied by instructing subjects to increase the tempo progressively by 10%. Clear tempo-dependent modulations of the amplitude were observed in movements with instructed constant amplitude when the other hand performed alternating amplitudes. The effect of the size of constant-amplitude movements on the mean amplitude of the other hand indicated cross-talk at the execution level. Cross-talk at the programming level was revealed by the dependence of the current amplitude on the change in the amplitude of the other hand in the preceding cycle. Finally, asymmetric cross-manual effects were observed.  相似文献   

14.
When subjects make rapid bimanual aiming movements over different distances, spatial assimilations are shown; the shorter distance limb overshoots when paired with a longer distance limb. Recent research has also shown spatial assimilations to be greater in the nonpreferred left limb of right-handed subjects, but it is not known whether the increased spatial assimilations represent a handedness effect or one of hemispheric lateralization of motor control. To determine the nature of the asymmetric effect, left- (n = 32) and right- (n = 60) handed subjects part practiced, then whole practiced, short (20 degrees ) and long 60 degrees ) reversal movements. During whole practice, both groups showed spatial assimilations in the shorter distance limb, particularly when the left limb performed the short movement. This asymmetry was greatest for right-handed subjects, but left-handed subjects showed smaller, but systematic effects, providing moderate support for the hypothesis that the asymmetric effect is due to hemispheric lateralization of motor control. All interlimb differences in spatial accuracy for the short and long movements were eliminated with practice, however, suggesting the asymmetric effect was temporary as well. In addition, subjects who part practiced the long movement just prior to whole practice showed greater overshooting in the short distance limb compared with subjects who followed the other practice order throughout whole practice and the no-KR retention trials. Such findings suggest that the part-practice order of bimanual tasks can directionally bias whole-task performance.  相似文献   

15.
《Human movement science》1999,18(2-3):307-343
Four subjects produced coordinated movements, consisting of flexion and extension of the wrist in ipsilateral (right wrist only), contralateral (left wrist only), inphase (both wrists in flexion or both in extension) and antiphase (one wrist in flexion, the other in extension) conditions. Electromyographic (EMG) activity was recorded from right wrist flexor and extensor muscles. In one session, transcranial magnetic stimuli (TMS) of the left motor cortex, around threshold intensity, evoked short-latency responses in the right wrist extensors and flexors. In another session, the median nerve at the cubital fossa was stimulated to elicit an H-reflex in the right flexor carpi radialis (rFCR). A movement cycle was divided into 8 segments. In total, 10 identical stimuli were delivered during each segment in each condition, at two movement frequencies. The magnitude of the EMG reponses to TMS was modulated markedly during movements made in the ipsilateral condition, and in both bimanual conditions. EMG activity was greater, and motor-evoked potentials (MEPs) were larger in the antiphase condition than in the inphase condition. When the amplitudes of the MEPs were normalised with respect to background EMG, no significant differences between the bimanual conditions were obtained. For H-reflexes, significant differences between the two bimanual conditions were observed, suggesting differences in levels of excitability of the Ia afferent pathway. These differences were attributed to segmental input associated with changes in muscle length arising from limb movement, and upon descending input to the spinal cord, possibly mediated by Renshaw cell inhibition. During rhythmic passive movement of the right limb, H-reflexes were inhibited and MEPs potentiated in a cyclic fashion. Passive movement of the contralateral left limb resulted in inhibition of both responses.PsycINFO classification: 2330; 2530; 2540  相似文献   

16.
Gerloff C  Andres FG 《Acta psychologica》2002,110(2-3):161-186
Bimanual coordination of skilled finger movements requires intense functional coupling of the motor areas of both cerebral hemispheres. This coupling can be measured non-invasively in humans with task-related coherence analysis of multi-channel surface electroencephalography. Since bimanual coordination is a high-level capability that virtually always requires training, this review is focused on changes of interhemispheric coupling associated with different stages of bimanual learning. Evidence is provided that the interaction between hemispheres is of particular importance in the early phase of command integration during acquisition of a novel bimanual task. It is proposed that the dynamic changes in interhemispheric interaction reflect the establishment of efficient bimanual ‘motor routines'. The effects of callosal damage on bimanual coordination and learning are reviewed as well as functional imaging studies related to bimanual movement. There is evidence for an extended cortical network involved in bimanual motor activities which comprises the bilateral primary sensorimotor cortex (SM1), supplementary motor area, cingulate motor area, dorsal premotor cortex and posterior parietal cortex. Current concepts about the functions of these structures in bimanual motor behavior are reviewed.  相似文献   

17.
《Human movement science》1999,18(2-3):345-375
The timing of repetitive movements was assessed in a callosotomy patient under unimanual and bimanual conditions. Similar to neurologically healthy individuals, the patient exhibited strong temporal coupling in the bimanual condition. Moreover, for both the left and right hands, within-hand temporal variability was reduced in the bimanual condition compared to the unimanual conditions. This bimanual advantage is hypothesized to reflect the temporal integration of separable timing signals, one associated with the left hand and one associated with the right hand (Helmuth, L. L., & Ivry, R. B. (1996). When two hands are better than one: Reduced timing variability during bimanual movements. Journal of Experimental Psychology: Human Perception and Performance, 2, 278–293). The fact that it persists following callosotomy is inconsistent with models that attribute bimanual coordination in these patients to the control of a single hemisphere. Rather, the results suggest that motor commands from the two hemispheres are integrated subcortically.PsychINFO Classification: 2330; 2340; 2520  相似文献   

18.
Structural constraints affect the coordination of bimanual movements in ways that have been taken to suggest that the specification of different movement amplitudes is subject to strong intermanual interference effects. Most experiments taken to support this notion, however, confounded variations of movement amplitudes with symmetry in starting locations and variations in target location. The present experiment was designed to further investigate the relative influence of the parameters starting location, movement amplitude, and target location on bimanual movement coordination. Participants performed simultaneous reaching movements with the left and right hand from same and different starting locations to same and different target locations. On each trial, two movements could match on none, one, or all of the parameters. We assessed the influence of each parameter by comparing conditions in which only a single parameter matched between the two hands with conditions in which all parameters differed. The reaction-time data revealed some challenging results for previous studies: (1) same starting locations significantly delayed movement initiation; (2) specifying movement amplitudes had virtually no effect on movement initiation, whereas (3) selecting same target locations significantly benefited the bimanual responses. These findings cannot be taken to support the notion that amplitude specification affects the initiation of bimanual movements. Rather, they support the notion that the initial starting locations of the two hands and the selection of target locations decide about the ease with which we perform bimanual reaching movements.  相似文献   

19.
20.
Bilateral facilitation of motor control in chronic hemiplegia   总被引:3,自引:0,他引:3  
The present study addressed the efficacy of concurrently moving both arms, with and without a load added to the uninvolved arm, in facilitating the quality of movement of the involved side in individuals with moderate, chronic hemiplegia. Six hemiplegic cerebrovascular accident (CVA) subjects with left-hemisphere lesions participated in the study. The four males and two females ranged from 46 to 77 years of age and 30–96 months post-CVA. All subjects scored at least 70% on the Fugl-Meyer test of motor function. The task was to perform discrete unilateral and bilateral elbow extensions in the horizontal plane. The movements were 45° in amplitude and were to terminate in a 10° target zone that was indicated by an illustration of a coffee mug. The instructions were to move toward the mug as smoothly as possible in a movement time (MT) determined to be 20% longer than their minimal MT for that distance. The primary dependent variable was the percentage of continuous vs. discontinuous trajectories observed in each condition, based on whether or not a transient hesitation or reversal was observed. Phase of peak velocity was also quantified as a general indication of the symmetry of the velocity profile. Three of the six subjects exhibited a greater percentage of continuous movements of the involved arm in the nonloaded bilateral condition than the unimanual condition. Five subjects benefited when the uninvolved arm was inertially loaded in the bilateral condition when compared with unimanual performance. Only the oldest subject failed to exhibit facilitation. Peak velocity phase tended to normalize toward symmetry in the bilateral conditions. These findings are consistent with prior evidence that the control of the involved arm improves during bimanual performance for some hemiplegic subjects. It further suggests loading the uninvolved arm may benefit some subjects with respect to unimanual performance, with age perhaps playing a role in determining efficacy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号