首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study investigates bimanual interference in a tool-use task, in which two target locations had to be touched concurrently with two tools, one for each hand. Target locations were either in the same, or in different directions for the two hands. Furthermore, the tools implemented either a compatible or an incompatible relationship between the direction of target locations and the direction of associated bodily movements. Results indicated bimanual interference when the tools had to be moved to targets in different directions. Furthermore, this interference was much more pronounced when the tools required body movements that were spatially incompatible to the cued target locations as compared to when they were compatible. These results show that incompatible relationships between target directions and bodily movement directions can aggravate bimanual interference in tool use.  相似文献   

2.
When the left and right hands produce 2 different rhythms simultaneously, coordination of the hands is difficult unless the rhythms can be integrated into a unified temporal pattern. In the present study, the authors investigated whether a similar account can be applied to the spatial domain. Participants (N = 8) produced a movement trajectory of semicircular form in single-limb and bimanual conditions. In the bimanual tasks, 1 limb moved above the other in the frontal plane. Bimanual unified tasks were constructed so that the spatial paths to be produced by the 2 limbs could be easily conceptualized as parts of a unified circle pattern. Bimanual distinct tasks availed a less obvious spatial pattern that would unify the 2 tasks. Performance of the spatial patterns was more accurate in the unified task, despite similar demands placed on the coordination dynamics between the limbs in the 2 cases (e.g., the phase relations). The authors conclude that a dual task becomes a single task, and interlimb interference is reduced, when the spatial patterns produced by the 2 hands form a geometric arrangement that can be conceptualized as a unified representation.  相似文献   

3.
Kelso, Southard, and Goodman (1979) and Marteniuk and MacKenzie (1980) have each proposed a different theoretical model for bimanual coordination. In the model of Kelso et al., a close temporal relationship between the hands in a bimanual task is predicted, even when each hand is required to move different distances. In Marteniuk and MacKenzie's model, separate motor commands are issued so that each limb will arrive simultaneously at the specified movement endpoint, leading to low temporal associations between limbs. In most previous work on bimanual coordination, manual aiming tasks with differing constraints have been used by subjects in individual studies. In this study, the usefulness of existing models for predicting performance in a real-world catching task in which the required movement pattern was constrained by ball flight characteristics was examined. E1even university students caught tennis balls with both hands in the following 3 conditions: Condition 1. Ball projected to the right shoulder area (left hand moved a greater distance than the right); Condition 2. Ball projected to center of the chest area, (both hands moved same distance); and Condition 3. Ball projected to left shoulder area (right hand moved a greater distance). Kinematic data (time to peak velocity, movement initiation time) indicating significant cross-correlations between the left and right limbs in all 3 conditions concurred with the data of Kelso et al. (1979) on manual aiming. Timing appeared to be an essential variable coordinating bimanual interceptive actions. Although the limbs moved at different speeds when each was required to move different distances, times to peak velocity showed strong associations, suggesting the presence of a coordinative structure.  相似文献   

4.
Kelso, Southard, and Goodman (1979) and Marteniuk and MacKenzie (1980) have each proposed a different theoretical model for bimanual coordination. In the model of Kelso et al., a close temporal relationship between the hands in a bimanual task is predicted, even when each hand is required to move different distances. In Marteniuk and MacKenzie's model, separate motor commands are issued so that each limb will arrive simultaneously at the specified movement endpoint, leading to low temporal associations between limbs. In most previous work on bimanual coordination, manual aiming tasks with differing constraints have been used by subjects in individual studies. In this study, the usefulness of existing models for predicting performance in a real-world catching task in which the required movement pattern was constrained by ball flight characteristics was examined. Eleven university students caught tennis balls with both hands in the following 3 conditions: Condition 1. Ball projected to the right shoulder area (left hand moved a greater distance than the right); Condition 2. Ball projected to center of the chest area, (both hands moved same distance); and Condition 3. Ball projected to left shoulder area (right hand moved a greater distance). Kinematic data (time to peak velocity, movement initiation time) indicating significant cross-correlations between the left and right limbs in all 3 conditions concurred with the data of Kelso et al. (1979) on manual aiming. Timing appeared to be an essential variable coordinating bimanual interceptive actions. Although the limbs moved at different speeds when each was required to move different distances, times to peak velocity showed strong associations, suggesting the presence of a coordinative structure.  相似文献   

5.
6.
When the left and right hands produce 2 different rhythms simultaneously, coordination of the hands is difficult unless the rhythms can be integrated into a unified temporal pattern. In the present study, the authors investigated whether a similar account can be applied to the spatial domain. Participants (N = 8) produced a movement trajectory of semicircular form in single-limb and bimanual conditions. In the bimanual tasks, 1 limb moved above the other in the frontal plane. Bimanual unified tasks were constructed so that the spatial paths to be produced by the 2 limbs could be easily conceptualized as parts of a unified circle pattern. Bimanual distinct tasks availed a less obvious spatial pattern that would unify the 2 tasks, despite similar demands placed on the coordination dynamics in the 2 cases (e.g., the phase relations). The authors conclude that a dual task becomes a single task, and interlimb interference is reduced, when the spatial patterns produced by the 2 hands form a geometric arrangement that can be conceptualized as a unified representation.  相似文献   

7.
In 3 experiments, the authors investigated and described how individuals control manual interceptive movements to slowly moving targets. Participants (N = 8 in each experiment) used a computer mouse and a graphics tablet assembly to manually intercept targets moving across a computer screen toward a marked target zone. They moved the cursor so that it would arrive in the target zone simultaneously with the target. In Experiment 1, there was a range of target velocities, including some very slow targets. In Experiment 2, there were 2 movement distance conditions. Participants moved the cursor either the same distance as the target or twice as far. For both experiments, hand speed was found to be related to target speed, even for the very slowly moving targets and when the target-to-cursor distance ratios were altered, suggesting that participants may have used a strategy similar to tracking. To test that notion, in Experiment 3, the authors added a tracking task in which the participants tracked the target cursor into the target zone. Longer time was spent planning the interception movements; however, there was a longer time in deceleration for the tracking movements, suggesting that more visually guided trajectory updates were made in that condition. Thus, although participants scaled their interception movements to the cursor speed, they were using a different strategy than they used in tracking. It is proposed that during target interception, anticipatory mechanisms are used rather than the visual feedback mechanism used when tracking and when pointing to stationary targets.  相似文献   

8.
The authors explored how trunk compensation and hand symmetry in stroke survivors and healthy controls were affected by the distance and height of virtual targets during a bimanual reaching task. Participants were asked to reach to 4 different virtual targets set at: 90% of their arm length at shoulder, xiphoid process, and knee height, and 50% of their arm length at xiphoid process height. For the stroke group, for all targets, the hands’ movements were more asymmetrical than those of the healthy group, with more asymmetry observed in the direction of gravity, and trunk forward displacement values were larger and more variable. The knee targets had the largest trunk displacement values; index of curvature and trunk displacement were strongly correlated with participants’ impairment scores. A strong correlation was found between the hands’ asymmetry in the anterior or posterior direction for the shoulder targets, and the impairment scores. The results suggest that target height influences the degree of trunk compensation and hand symmetry during bimanual reaching by hemiparetic participants.  相似文献   

9.
Spatial topological constraints in a bimanual task.   总被引:11,自引:0,他引:11  
Previous research has shown that the concurrent performance of two manual tasks results in a tight temporal coupling of the limbs. The intent of the present experiment was to investigate whether a similar coupling exists in the spatial domain. Subjects produced continuous drawing of circles and lines, one task at a time or bimanually, for a 20 s trial. In bimanual conditions in which subjects produced the circle task with one hand and the line task with the other, there was a clear tendency for the movement path of the circle task to become more line-like and the movement path of the line task to become more circle-like, i.e., a spatial magnet effect. A bimanual circle task and a bimanual line task did not exhibit changes in the movement path when compared to single-hand controls. In all bimanual conditions, the hands were tightly temporally locked. The evidence of temporal coupling and concomitant accommodation in the movement path for the conditions in which the hands were producing different shapes suggests that spatial constraints play a role in the governance of bimanual coordinated actions.  相似文献   

10.
Sixty-three children between 5 and 12 years of age and 15 adults performed a unimanual and a bimanual isometric force task. The performance of the preferred hand in the unimanual task was compared to the performance of the preferred hand in the bimanual task. It was hypothesized that in the bimanual task the absolute error will be higher, there will be more irregularity and the participants will need more time due to the additional effort from the central nervous system, especially with respect to the communication between the hemispheres. Furthermore, in younger children bimanual force variability was expected to be higher due to developmental aspects concerning callosal maturation and attention. It was found that with respect to force generation the preferred hand was not affected by bilateral isometric force generation, but with respect to force regulation it was. The coefficient of variation (CV) of the force was 34% larger in the bimanual task as compared to the unimanual task. For the time to target force, the increase was 28%. With repetition of the trials the CV decreased in the bimanual task, but only in the youngest age group. During development there was no change in absolute error, yet there was a major reduction in force variability in the bimanual task. It is suggested that improvement in interhemispheric communication and in the ability to focus attention plays a role in the decrease in variability with age.  相似文献   

11.
When humans simultaneously perform different movements with both hands, each limb movement interferes with the contralateral limb movement (bimanual coupling). Previous studies on both healthy volunteers and patients with central or peripheral nervous lesions suggested that such motor constraints are tightly linked to intentional motor programs, rather than to movement execution. Here, we aim to investigate this phenomenon, by using a circles-lines task in which, when subjects simultaneously draw lines with the right hand and circles with the left hand, both the trajectories tend to become ovals (bimanual coupling effect). In a first group, we immobilized the subjects’ left arm with a cast and asked them to try to perform the bimanual task. In a second group, we passively moved the subjects’ left arm and asked them to perform voluntary movements with their right arm only. If the bimanual coupling arises from motor intention and planning rather than spatial movements, we would expect different results in the two groups. In the Blocked group, where motor intentionality was required but movements in space were prevented by immobilization of the arm, a significant coupling effect (i.e., a significant increase of the ovalization index for the right hand lines) was found. On the contrary, in the Passive group, where movements in space were present but motor intentionality was not required, no significant coupling effect was observed. Our results confirmed, in healthy subjects, the central role of the intentional and predictive operations, already evidenced in pathological conditions, for the occurrence of bimanual coupling.  相似文献   

12.
The goal of this study was to examine the relations between three different measures of handedness: unimanual reaching, bimanual manipulation and unimanual manipulation. The appropriateness of the task chosen to evaluate handedness was also explored by contrasting different bimanual manipulation tasks for the more or less differentiated (passive\active) roles assigned to each hand. Forty children, between 18 and 36 months of age, were tested in the three conditions. The results show that the degree of bimanual handedness is greater on the bimanual tasks with a strong role differentiation than on the tasks with less differentiation. Bimanual tasks with a strong role differentiation elicited more right‐handedness than unimanual reaching. Among the children who showed handedness in reaching, the correlation between unimanual and bimanual handedness was high, especially for right‐handers. For some tasks, bimanual handedness appeared at the earliest age studied here (18 months), and there was little relationship between bimanual handedness and bimanual skill. In contrast with unimanual reaching, there was no age‐related change in the degree of handedness for either bimanual or unimanual manipulation. There was a bias toward the use of the right hand for unimanual manipulation. It was concluded that grasping is not the best task to employ to look for robust evidence of handedness, and that bimanual tasks offer a better way to estimate handedness in children, as long as the tasks are carefully chosen.  相似文献   

13.
Although subjects failed to detect a target displacement if it occurred near the time of a saccadic eye movement (a cognitive visual task), they were still able to point to the center of the target with an unseen pointer (a motor visual task). Pointing performance was not affected by detecting or failing to detect a stimulus displacement. The experiments demonstrate that some information that is available to a motor-oriented visual system is unavailable to the cognitive visual system, under conditions simulating normal perception.  相似文献   

14.
Three experiments assessed coupling phenomena in the coordination of bimanual force pulses. Experiment 1 required symmetric force pulses (equal target forces and rise times for both hands) using the index finger of each hand. As the authors expected, on the basis of bimanual pointing movement results, this experiment revealed positive correlations between both the force rise times and the force amplitudes of the two hands. Experiments 2 and 3 included asymmetric conditions with different target force amplitudes (Experiment 2) or target rise times (Experiment 3). In Experiment 2 force amplitudes but not rise times were fully decoupled in the asymmetric condition. In the asymmetric condition of Experiment 3, however, neither rise times nor force amplitudes were fully decoupled. The results suggest a hierarchical control structure with temporal control dominating nontemporal control of bimanual force coordination.  相似文献   

15.
Previous studies of clinical populations and normal children have suggested that the efficiency of callosal transfer correlates with the ability to sustain attention. The purpose of the present study was to determine whether the same might be true for normal adults. Subjects were 42 right-handed adults. The efficiency of the transfer via the anterior callosum was assessed on a bimanual coordination task. The efficiency of the posterior callosum was measured on a tachistoscopic task that required subjects to compare two lines when both were presented either to the same visual field or to opposite visual fields. Sustained attention was measured on a vigilance task in which the time between target presentations (ISI) was varied. Performance on the bimanual task correlated with the ability to sustain attention over the entire 20 min of the vigilance task. The efficiency of the posterior callosum was related to the ability to detect targets that occurred after relatively long ISIs.  相似文献   

16.
Poststroke hemiparetic individuals (n = 9) and a control group (n = 9) completed a frequency-scaled circle-drawing task in unimanual and bimanual conditions. Measures of intralimb spatial and temporal task accuracy and interlimb coordination parameters were analyzed. Significant reductions in task performance were seen in both limbs of the patients and controls with the introduction of bimanual movement. Spatial performance parameters suggested that the 2 groups focused on different hands during bimanual conditions. In the controls, interlimb coordination variables indicated predictable hand dominance effects, whereas in the patient group, dominance was influenced by the side of impairment and prior handedness of the individual. Therefore, in this particular bimanual task, performance improvements in the hemiplegic side could not be elicited. Intrinsic coupling asymmetries between the hands can be altered by unilateral motor deficits.  相似文献   

17.
Most research based on Fitts' law define a log-linear relationship between temporal and spatial accuracy in goal-directed aiming tasks using stationary targets. Whether this relationship holds or not when the targets have varying velocities, and how the behavioral strategies and physical activities may change accordingly are of interest. The aim of this study was to investigate the relationship between temporal and spatial accuracy in goal-directed aiming tasks with moving targets. Participants were asked to aim at two target widths using a joystick. Results demonstrated that in a goal-directed aiming task there was a negative effect on performance when target velocity was increased or target width was decreased. Participants moved faster and then made more systematic errors in a high-velocity target condition. Results may be applicable to the complex perceptual-motor behavior of people who perform tasks using computers.  相似文献   

18.
Bimanual coordination dynamics in poststroke hemiparetics   总被引:3,自引:0,他引:3  
Poststroke hemiparetic individuals (n = 9) and a control group (n = 9) completed a frequency-scaled circle-drawing task in unimanual and bimanual conditions. Measures of intralimb spatial and temporal task accuracy and interlimb coordination parameters were analyzed. Significant reductions in task performance were seen in both limbs of the patients and controls with the introduction of bimanual movement. Spatial performance parameters suggested that the 2 groups focused on different hands during bimanual conditions. In the controls, interlimb coordination variables indicated predictable hand dominance effects, whereas in the patient group, dominance was influenced by the side of impairment and prior handedness of the individual. Therefore, in this particular bimanual task, performance improvements in the hemiplegic side could not be elicited. Intrinsic coupling asymmetries between the hands can be altered by unilateral motor deficits.  相似文献   

19.
S Mateeff  J Hohnsbein 《Perception》1989,18(1):93-104
Subjects used eye movements to pursue a light target that moved from left to right with a velocity of 15 deg s-1. The stimulus was a sudden five-fold decrease in target intensity during the movement. The subject's task was to localize the stimulus relative to either a single stationary background point or the midpoint between two points (28 deg apart) placed 0.5 deg above the target path. The stimulus was usually mislocated in the direction of eye movement; the mislocation was affected by the spatial adjacency between background and stimulus. When an auditory, rather than a visual, stimulus was presented during tracking, target position at the time of stimulus presentation was visually mislocated in the direction opposite to that of eye movement. The effect of adjacency between background and target remained the same. The involvement of processes of subject-relative and object-relative visual perception is discussed.  相似文献   

20.
Four response methods for indicating the perceived locations of nearby objects were evaluated: the direct-location (DL) method, where a response pointer is moved directly to the perceived location of the target; the large-head (LH) and small-head (SH) methods, where the pointer is moved to the target location relative to a full-scale or half-scale manikin head; and the verbal report (VR) method, where the spherical coordinates of the target location are indicated verbally. Measurements with a visual target indicated that the DL method was relatively unbiased and considerably more accurate than the other methods, which were all roughly equivalent. Correcting for bias improved accuracy in the LH, SH, and VR responses, but not to the level of the uncorrected DL responses. Replacing the visual target with an acoustic stimulus approximately doubled the errors with the DL response but indicated similar performance in the front and rear hemispheres. The results suggest that DL is the most appropriate response method for close-range localization experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号