首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Verbal declarative memory is one of the most reliably impaired cognitive functions in schizophrenia. Important issues are whether the problem is reversible, and which brain regions underlie improvement. We showed previously that glucose administration improved declarative memory in patients with schizophrenia, and sought in this pilot study to identify whether glucose affects the location or degree of activation of brain regions involved in a verbal encoding task. Seven clinically stable and medicated patients with schizophrenia or schizoaffective disorder, who showed deficits on a clinical test of memory, participated in the study. Subjects served as their own controls in a double-blind, crossover protocol that consisted of two sessions about a week apart. In each session, subjects ingested a beverage flavored with lemonade that contained 50 g of glucose on one occasion, and saccharin on the other. Blood glucose was measured before and 15, 50, and 75 min after ingestion. After ingesting the beverage, they performed a verbal encoding task while undergoing brain functional magnetic resonance imaging. The results showed significantly greater activation of the left parahippocampus during novel sentence encoding in the glucose condition, compared to the saccharin condition, despite no change in memory performance. A trend towards greater activation of the left dorsolateral prefrontal cortex (p<.07) was also evident in the glucose condition. These pilot findings emphasize the sensitivity of both the medial temporal and prefrontal regions to effects of glucose administration during encoding, and are consistent with the hypothesis that these regions also participate in declarative memory improvements following glucose administration.  相似文献   

2.
Early emotional experiences affect developing brain systems that subsequently mediate adult learning and memory in rodents. Here we test for similar effects in squirrel monkeys (Saimiri sciureus) four years after disruptions in early maternal availability. These conditions were previously shown to generate differences in emotional behavior, hypothalamic-pituitary-adrenal stress physiology, and right ventral medial prefrontal volumes determined in adulthood by magnetic resonance imaging. This report identifies in the same monkeys variability in reward-related memory on tests with a spatial reversal. Adult monkeys that more often selected locations repeatedly rewarded before each reversal had larger right ventral medial prefrontal volumes, but not hippocampal nor dorsolateral prefrontal volumes on the left or right brain side. Differences in performance were also discerned after each spatial reversal. These findings indicate that maternal availability alters developing ventral medial prefrontal brain regions involved in reward-related memory.  相似文献   

3.
Functional magnetic resonance imaging (fMRI) was used to study the neural correlates of neutral, stressful, negative and positive autobiographical memories. The brain activity produced by these different kinds of episodic memory did not differ significantly, but a common pattern of activation for different kinds of autobiographical memory was revealed that included (1) largely bilateral portions of the medial and superior temporal lobes, hippocampus and parahippocampus, (2) portions of the ventral, medial, superior and dorsolateral prefrontal cortex, (3) the anterior and posterior cingulate, including the retrosplenial, cortex, (4) the parietal cortex, and (5) portions of the cerebellum. The brain regions that were mainly activated constituted an interactive network of temporal and prefrontal areas associated with structures of the extended limbic system. The main bilateral activations with left-sided preponderance probably reflected reactivation of complex semantic and episodic self-related information representations that included previously experienced contexts. In conclusion, the earlier view of a strict left versus right prefrontal laterality in the retrieval of semantic as opposed to episodic autobiographical memory, may have to be modified by considering contextual variables such as task demands and subject variables. Consequently, autobiographical memory integration should be viewed as based on distributed bi-hemispheric neural networks supporting multi-modal, emotionally coloured components of personal episodes.  相似文献   

4.
We investigated whether postextinction administration of methylene blue (MB) could enhance retention of an extinguished conditioned response. MB is a redox compound that at low doses elevates cytochrome oxidase activity, thereby improving brain energy production. Saline or MB (4 mg/kg intraperitoneally) were administered to rats for 5 d following extinction training of tone-footshock conditioning. Postextinction freezing was lower in rats receiving MB compared with saline, suggesting that MB improved retention of the extinction memory. The MB effect was specific to tone-evoked freezing because there were no differences in pretone freezing. Control subjects similarly injected with MB showed no evidence of nonspecific effects on measures of motor activity and fearfulness. MB-treated rats exhibited both greater retention of extinction and greater overall brain metabolic activity. Rats with higher retention of extinction also showed a relative increase in cytochrome oxidase activity in prefrontal cortical regions, especially anterior infralimbic cortex, dorsal and medial frontal cortex, and lateral orbital cortex. These regional metabolic increases were also correlated to the behavioral freezing index used to assess retention of extinction. It was concluded that MB administered postextinction could enhance retention of extinction memory through an increase in brain cytochrome oxidase activity.  相似文献   

5.
情绪和记忆的相互作用   总被引:10,自引:0,他引:10  
情绪与记忆的关系一直是社会认知神经科学研究的重要课题。该文简要介绍了近年来国内外有关情绪和记忆的研究,着重讨论了情绪在记忆中的作用、情绪影响记忆的途径以及参与情绪和记忆交互作用的脑区;特别强调了情绪唤醒对杏仁核的影响,以及杏仁核与其它内侧颞叶结构和前额叶的相互作用  相似文献   

6.
The medial temporal lobe has been implicated in studies of episodic memory tasks involving spatio-temporal context and object-location conjunctions. We have previously demonstrated that an increased level of practice in a free-recall task parallels a decrease in the functional activity of several brain regions, including the medial temporal lobe, the prefrontal, the anterior cingulate, the anterior insular, and the posterior parietal cortices, that in concert demonstrate a move from elaborate controlled processing towards a higher degree of automaticity. Here we report data from two experiments that extend these initial observations. We used a similar experimental approach but probed for effects of retrieval paradigms and stimulus material. In the first experiment we investigated practice related changes during recognition of object-location conjunctions and in the second during free-recall of pseudo-words. Learning in a neural network is a dynamic consequence of information processing and network plasticity. The present and previous PET results indicate that practice can induce a learning related functional restructuring of information processing. Different adaptive processes likely subserve the functional re-organisation observed. These may in part be related to different demands for attentional and working memory processing. It appears that the role(s) of the prefrontal cortex and the medial temporal lobe in memory retrieval are complex, perhaps reflecting several different interacting processes or cognitive components. We suggest that an integrative interactive perspective on the role of the prefrontal and medial temporal lobe is necessary for an understanding of the processing significance of these regions in learning and memory. It appears necessary to develop elaborated and explicit computational models for prefrontal and medial temporal functions in order to derive detailed empirical predictions, and in combination with an efficient use and development of functional neuroimaging approaches, to further the understanding of the processing significance of these regions in memory.  相似文献   

7.
We used a novel automatic camera, SenseCam, to investigate recognition memory for real-life events at a 5-month retention interval. Using fMRI we assessed recollection and familiarity memory using the remember/know procedure. Recollection evoked no medial temporal lobe (MTL) activation compared to familiarity and new responses. Instead, recollection activated diverse regions in neocortex including medial prefrontal cortex. We observed decreased activation in anterior hippocampus/ anterior parahippocampal gyrus (aPHG) at 5 months compared to a 36-hour retention interval. Familiarity was associated with greater activation in aPHG and posterior parahippocampal gyrus (pPHG) than recollection and new responses. Familiarity activation decreased over time in anterior hippocampus/aPHG and posterior hippocampus/pPHG. The engagement of neocortical regions such as medial prefrontal cortex at a 5-month delay, together with the reduced MTL activation at 5 months relative to at 36 hours is in line with the assumptions of Consolidation theory. SenseCam provides a valuable technique for assessing the processes that underlie remote everyday recognition memory.  相似文献   

8.
客体与空间工作记忆的分离:来自皮层慢电位的证据   总被引:2,自引:0,他引:2  
沃建中  罗良  林崇德  吕勇 《心理学报》2005,37(6):729-738
利用128导事件相关电位技术,采用延迟匹配任务的实验范式,测查了16名正常被试在完成客体任务和空间任务时的皮层慢电位(slow cortical potentials,简称sp成分),实验发现:在后部脑区,客体工作记忆与空间工作记忆在慢波活动的时间上存在分离,空间任务更早的诱发出负sp成分,并且空间任务激活更多的后部脑区;左下前额叶在客体工作记忆任务与空间工作记忆任务中都有激活,并且激活强度不存在显著差异;背侧前额叶主要负责客体信息的保持与复述,但左右背侧前额叶的激活强度存在不对称性。  相似文献   

9.
陈伟海  乔婧  杨瑜  袁加锦 《心理科学进展》2014,22(10):1585-1596
暴露疗法是治疗创伤后应激障碍的主要行为疗法。当被试反复暴露于可引起恐惧反应的条件刺激(如白噪音), 但却不伴有非条件刺激(如足底电击)时, 恐惧记忆将被消退, 形成消退记忆。但恐惧记忆并未从根本上被擦除, 当被试在消退训练以外的情景暴露于条件刺激时, 已消退的恐惧记忆将会重现。海马、内侧前额叶皮层、杏仁核等脑区及其相互连接的神经环路是情景诱发恐惧记忆重现的生理基础。情景变化诱发恐惧记忆重现过程中, 海马可能是通过直接投射至杏仁核基底核、杏仁核外侧核或通过边缘前皮质间接调控杏仁核基底核、杏仁核外侧核的功能, 产生恐惧反应。  相似文献   

10.
Working memory retention systems: a state of activated long-term memory   总被引:7,自引:0,他引:7  
Ruchkin DS  Grafman J  Cameron K  Berndt RS 《The Behavioral and brain sciences》2003,26(6):709-28; discussion 728-77
High temporal resolution event-related brain potential and electroencephalographic coherence studies of the neural substrate of short-term storage in working memory indicate that the sustained coactivation of both prefrontal cortex and the posterior cortical systems that participate in the initial perception and comprehension of the retained information are involved in its storage. These studies further show that short-term storage mechanisms involve an increase in neural synchrony between prefrontal cortex and posterior cortex and the enhanced activation of long-term memory representations of material held in short-term memory. This activation begins during the encoding/comprehension phase and evidently is prolonged into the retention phase by attentional drive from prefrontal cortex control systems. A parsimonious interpretation of these findings is that the long-term memory systems associated with the posterior cortical processors provide the necessary representational basis for working memory, with the property of short-term memory decay being primarily due to the posterior system. In this view, there is no reason to posit specialized neural systems whose functions are limited to those of short-term storage buffers. Prefrontal cortex provides the attentional pointer system for maintaining activation in the appropriate posterior processing systems. Short-term memory capacity and phenomena such as displacement of information in short-term memory are determined by limitations on the number of pointers that can be sustained by the prefrontal control systems.  相似文献   

11.
Gamma-hydroxybutyric acid (GHB) is a drug with abuse potential, popularly known as "liquid ecstasy". It is an endogenous compound of the mammalian brain which satisfies many of the criteria for consideration as a neurotransmitter or neuromodulator. In this study, the effects of acute administration of GHB (40, 80 and 120 mg/kg, ip) on anxiety, tested in the light/dark box, were examined in male mice of the OF.1 strain. Likewise, we compared the behavioural profile of GHB with that induced by mCPP (1 mg/kg, ip), a compound with known anxiogenic actions. GHB-treated mice spent notably less time in the lit area (40 and 80 mg/kg) and more time in the dark area (all doses), whereas the total number of 'rearings', transitions and latency were significantly reduced. A very similar behavioural profile was observed in mCPP-treated animals. Overall, these findings indicate that GHB exhibits anxiogenic-like properties in male mice. It is suggested that the anxiogenic effects of GHB could be related to its ability to modulate GABA and/or dopaminergic receptors.  相似文献   

12.
The medial prefrontal cortex exhibits a higher resting metabolic rate than many other brain regions. This physiological default mode might support a psychological default state of chronic self-evaluation that helps people consider their strengths and weaknesses when planning future actions. However, a recent imaging study that relates medial prefrontal cortex activity to self-evaluation raises new questions about whether the psychological default mode of self-evaluation is best characterized by accurate self-evaluations or by feeling good about yourself.  相似文献   

13.
The present study examined expression of the immediate-early gene, c-Fos, following acquisition, 48-h (recent) recall, and 1-week (remote) recall of a socially transmitted food preference (STFP) in multiple brain regions implicated in learning and memory. In comparisons with controls, trained Long-Evans rats had increased Fos immunoreactivity in the ventral hippocampus following acquisition and recent recall. In the parahippocampal cortices, Fos was increased in the lateral entorhinal cortex after acquisition. In the orbitofrontal cortex, increased Fos immunoreactivity was observed in the lateral orbital cortex following both recent and remote recall and in the ventral orbital cortex following remote recall, indicating a role for the orbitofrontal cortex in the remote recall of STFP memory. In contrast, in the medial prefrontal cortex, increased Fos-ir was found following acquisition in the prelimbic cortex and following recent recall in the prelimbic and infralimbic cortices. No differences in Fos expression were found between trained rats and controls in the dorsal hippocampus, posterior parietal cortex, or amygdala. The present findings support a time-limited role of the hippocampus in the acquisition and recall of STFP memory and implicate neocortical regions involved in STFP acquisition, recent, and remote recall.  相似文献   

14.
Several brain regions associated with analogical mapping were identified using (15)O-positron emission tomography with 12 normal, high intelligence adults. Each trial presented during scanning consisted of a source picture of colored geometric shapes, a brief delay, and a target picture of colored geometric shapes. Analogous pictures did not share similar geometric shapes but did share the same system of abstract visuospatial relations. Participants judged whether each source-target pairing was analogous (analogy condition) or identical (literal condition). The results of the analogy-literal comparison showed activation in the dorsomedial frontal cortex and in the left hemisphere; the inferior, middle, and medial frontal cortices; the parietal cortex; and the superior occipital cortex. Based on these results as well as evidence from relevant cognitive neuroscience studies of reasoning and of executive working memory, we hypothesize that analogical mapping is mediated by the left prefrontal and inferior parietal cortices.  相似文献   

15.
数字加工的认知神经基础   总被引:7,自引:1,他引:6  
数学作为人类最重要的发明,越来越引起认知神经科学家的重视与关注,究竟什么才是人类数学知识的脑基础?脑成像的研究已经证实了一个参与数学运算加工的神经网络,包括顶叶皮质、侧前额叶皮质、内前额叶皮质、和小脑。实验证明:人脑对于数字具有一种模拟表达,类似于将数量在脑内部作为一种内心的数字线上的点来操作。神经心理学的研究证实数字加工的这种数量表达分布于两半球,其优势区位于下顶叶皮质区。  相似文献   

16.
Sensitivity and bias can be manipulated independently on a recognition test. The goal of this fMRI study was to determine whether neural activations associated with manipulations of a decision criterion would be anatomically distinct from neural activations associated with manipulations of memory strength and episodic retrieval. The results indicated that activations associated with shifting criteria (a manipulation of bias) were located in bilateral regions of the lateral cerebellum, lateral parietal lobe, and the dorsolateral prefrontal cortex extending from the supplementary motor area. These regions were anatomically distinct from activations in the prefrontal cortex produced during memory-based retrieval processes (manipulations of sensitivity), which tended to be more medial and anterior. These later activations are consistent with previous studies of episodic retrieval. Determining patterns of neural activations associated with decision-making processes relative to memory processes has important implications for Cognitive Neuroscience, including the use of these patterns to compare memory models in different paradigms.  相似文献   

17.
Both the prefrontal cortex and the hippocampus are crucial for memory encoding and recall. However, it remains unclear how these brain regions communicate to exchange information. Recent findings using simultaneous recordings from the hippocampus and prefrontal cortex of the behaving rat have demonstrated that prefrontal cells' firing is phase-locked to the hippocampal theta rhythm. This suggests that phase synchronization clocked by the theta rhythm could be crucial for the communication between hippocampal and prefrontal regions.  相似文献   

18.
Studies of delayed nonmatching-to-sample (DNMS) performance following lesions of the monkey cortex have revealed a critical circuit of brain regions involved in forming memories and retaining and retrieving stimulus representations. Using event-related functional magnetic resonance imaging (fMRI), we measured brain activity in 10 healthy human participants during performance of a trial-unique visual DNMS task using novel barcode stimuli. The event-related design enabled the identification of activity during the different phases of the task (encoding, retention, and retrieval). Several brain regions identified by monkey studies as being important for successful DNMS performance showed selective activity during the different phases, including the mediodorsal thalamic nucleus (encoding), ventrolateral prefrontal cortex (retention), and perirhinal cortex (retrieval). Regions showing sustained activity within trials included the ventromedial and dorsal prefrontal cortices and occipital cortex. The present study shows the utility of investigating performance on tasks derived from animal models to assist in the identification of brain regions involved in human recognition memory.  相似文献   

19.
The question examined in this study is concerned with a possible functional dissociation between the hippocampal formation and the prefrontal cortex in spatial navigation. Wistar rats with hippocampal damage (inflicted by a bilateral lesion of the fimbria fornix), rats with damage to the medial prefrontal cortex, and control-operated rats were examined for their performance in either one of two different spatial tasks in a Morris water maze, a place learning task (requiring a locale system), or a response learning task (requiring a taxon system). Performance of the classical place learning (allocentric) task was found to be impaired in rats with lesions of the fimbria fornix, but not in rats with damage of the medial prefrontal cortex, while the opposite effect was found in the response learning (egocentric) task. These findings are indicative of a double functional dissociation of these two brain regions with respect to the two different forms of spatial navigation. When the place learning task was modified by relocating the platform, the impairment in animals with fimbria fornix lesions was even more pronounced than before, while the performance of animals with medial prefrontal cortex lesions was similar to that of their controls. When the task was again modified by changing the hidden platform for a clearly visible one (visual cue task), the animals with fimbria fornix lesions had, at least initially, shorter latencies than their controls. By contrast, in the animals with medial prefrontal cortex damage this change led to a slight increase in escape latency.  相似文献   

20.
Studies of human classification learning using functional neuroimaging have suggested that basal ganglia and medial temporal lobe memory systems may interact during learning. We review these results and outline a set of possible mechanisms for such interactions. Effective connectivity analyses suggest that interaction between basal ganglia and medial temporal lobe are mediated by prefrontal cortex rather than by direct connectivity between regions. A review of possible neurobiological mechanisms suggests that interactions may be driven by neuromodulatory systems in addition to mediation by interaction of inputs to prefrontal cortical neurons. These results suggest that memory system interactions may reflect multiple mechanisms that combine to optimize behavior based on experience.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号