首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies of elementary calculation have shown that adults solve basic subtraction problems faster with problems presented in addition format (e.g., 6 ± =?13) than in standard subtraction format (e.g., 13 - 6?=?). Therefore, it is considered that adults solve subtraction problems by reference to the inverse operation (e.g., for 13 - 6?=?7, "I know that 13 is 6?+?7") because presenting the subtraction problem in addition format does not require the mental rearrangement of the problem elements into the addition format. In two experiments, we examine whether adults' use of addition to solve subtractions is modulated by the arrangement of minuend and subtrahend, regardless of format. To this end, we used arithmetic word problems since single-digit problems in subtraction format would not allow the subtrahend to appear before the minuend. In Experiment 1, subtractions were presented by arranging minuend and subtrahend according to previous research. In Experiment 2, operands were reversed. The overall results showed that participants benefited from word problems where the subtrahend appears before the minuend, including subtractions in standard subtraction format. These findings add to a growing body of literature that emphasizes the role of inverse reference in adults' performance on subtractions.  相似文献   

2.
Studies of elementary calculation have shown that adults solve basic subtraction problems faster with problems presented in addition format (e.g., 6?+?_?=?13) than in standard subtraction format (e.g., 13 – 6?=?_). Therefore, it is considered that adults solve subtraction problems by reference to the inverse operation (e.g., for 13 – 6?=?7, “I know that 13 is 6?+?7”) because presenting the subtraction problem in addition format does not require the mental rearrangement of the problem elements into the addition format. In two experiments, we examine whether adults' use of addition to solve subtractions is modulated by the arrangement of minuend and subtrahend, regardless of format. To this end, we used arithmetic word problems since single-digit problems in subtraction format would not allow the subtrahend to appear before the minuend. In Experiment 1, subtractions were presented by arranging minuend and subtrahend according to previous research. In Experiment 2, operands were reversed. The overall results showed that participants benefited from word problems where the subtrahend appears before the minuend, including subtractions in standard subtraction format. These findings add to a growing body of literature that emphasizes the role of inverse reference in adults' performance on subtractions.  相似文献   

3.
Subtraction problems of the type M ? S = ? can be solved with various mental calculation strategies. We investigated fourth‐ to sixth‐graders' use of the subtraction by addition strategy, first by fitting regression models to the reaction times of 32 two‐digit subtractions. These models represented three different strategy use patterns: the use of direct subtraction, subtraction by addition, and switching between the two strategies based on the magnitude of the subtrahend. Additionally, we compared performance on problems presented in two presentation formats, i.e., a subtraction format (81 ? 37 = .) and an addition format (37 + . = 81). Both methods converged to the conclusion that children of all three grades switched between direct subtraction and subtraction by addition based on the combination of two features of the subtrahend: If the subtrahend was smaller than the difference, direct subtraction was the dominant strategy; if the subtrahend was larger than the difference, subtraction by addition was mainly used. However, this performance pattern was only observed when the numerical distance between subtrahend and difference was large. These findings indicate that theoretical models of children's strategy choices in subtraction should include the nature of the subtrahend as an important factor in strategy selection.  相似文献   

4.
This study examined 25 university students’ use of addition to solve large single-digit subtractions by contrasting performance in the standard subtraction format (12 − 9 = .) and in the addition format (9 + . = 12). In particular, we investigated the effect of the relative size of the subtrahend on performance in both formats. We found a significant interaction between format, the magnitude of the subtrahend (S) compared to the difference (D) (S > D vs. S < D), and the numerical distance between subtrahend and difference. When the subtrahend was larger than the difference and S and D were far from each other (e.g., 12 − 9 = .), problems were solved faster in the addition than in the subtraction format; when the subtrahend was smaller than the difference and S and D were far from each other (e.g., 12 − 3 = .), problems were solved faster in the subtraction than in the addition format. However, when the subtrahend and the difference were close to each other (e.g., 13 − 7 = .), there were no significant reaction time differences between both formats. These results suggest that adults do not rely exclusively and routinely on addition to solve large single-digit subtractions, but select either addition-based or subtraction-based strategies depending on the relative size of the subtrahend.  相似文献   

5.
The aim of this study was to investigate the strategies used by third graders in solving the 81 elementary subtractions that are the inverses of the one-digit additions with addends from 1 to 9 recently studied by Barrouillet and Lépine. Although the pattern of relationship between individual differences in working memory, on the one hand, and strategy choices and response times, on the other, was the same in both operations, subtraction and addition differed in two important ways. First, the strategy of direct retrieval was less frequent in subtraction than in addition and was even less frequent in subtraction solving than the recourse to the corresponding additive fact. Second, contrary to addition, the retrieval of subtractive answers is confined to some peculiar problems involving 1 as the subtrahend or the remainder. The implications of these findings for developmental theories of mental arithmetic are discussed.  相似文献   

6.
Children apply various strategies to mentally solve multi-digit subtraction problems and the efficient use of some of them may depend more or less on numerical magnitude processing. For example, the indirect addition strategy (solving 72–67 as “how much do I have to add up to 67 to get 72?”), which is particularly efficient when the two given numbers are close to each other, requires to determine the proximity of these two numbers, a process that may depend on numerical magnitude processing. In the present study, children completed a numerical magnitude comparison task and a number line estimation task, both in a symbolic and nonsymbolic format, to measure their numerical magnitude processing. We administered a multi-digit subtraction task, in which half of the items were specifically designed to elicit indirect addition. Partial correlational analyses, controlling for intellectual ability and motor speed, revealed significant associations between numerical magnitude processing and mental multi-digit subtraction. Additional analyses indicated that numerical magnitude processing was particularly important for those items for which the use of indirect addition is expected to be most efficient. Although this association was observed for both symbolic and nonsymbolic tasks, the strongest associations were found for the symbolic format, and they seemed to be more prominent on numerical magnitude comparison than on number line estimation.  相似文献   

7.
Strategies used to solve two-digit addition problems (e.g., 27 + 48, Experiment 1) and two-digit subtraction problems (e.g., 73 – 59, Experiment 2) were investigated in adults and in children from Grades 3, 5, and 7. Participants were tested in choice and no-choice conditions. Results showed that (a) participants used the full decomposition strategy more often than the partial decomposition strategy to solve addition problems but used both strategies equally often to solve subtraction problems; (b) strategy use and execution were influenced by participants’ age, problem features, relative strategy performance, and whether the problems were displayed horizontally or vertically; and (c) age-related changes in complex arithmetic concern relative strategy use and execution as well as the relative influences of problem characteristics, strategy characteristics, and problem presentation on strategy choices and strategy performance. Implications of these findings for understanding age-related changes in strategic aspects of complex arithmetic performance are discussed.  相似文献   

8.
唐丹  申继亮  王大华  张凌 《心理学探新》2005,25(1):37-40,77
以223名60~85岁老年人及30名大学生作为被试,对加减心算能力的老化过程进行研究。任务为加减法及加减法的组合,包括有:单加、单减、先加后减、先减后加、连加及连减。结果表明,年龄与心算类型存在明显的交互作用。单加及单减两种最基本的心算能力对其它类型心算成绩的作用,在不同年龄段表现不同:对于大学生,单加起主要影响作用,而对于老年人,单减起主要影响作用。  相似文献   

9.
University students’ self-reports indicate that they often solve basic subtraction problems (13?6=?) by reference to the corresponding addition problem (6+7=13; therefore, 13?6=7). In this case, solution latency should be faster with subtraction problems presented in addition format (6+_=13) than in standard subtraction format (13+6=_). In Experiment 1, the addition format resembled the standard layout for addition with the sum on the right (6+_=13), whereas in Experiment 2, the addition format resembled subtraction with the minuend on the left (13=6+_). Both experiments demonstrated a latency advantage for large problems (minuend > 10) in the addition format as compared with the subtraction format (13+6=_), although the effect was larger in Experiment 1 (254 msec) than in Experiment 2 (125 msec). Small subtractions (minuend ≤ 10) in Experiment 1 were solved equally quickly in the subtraction or addition format, but in Experiment 2, performance on small problems was faster in the standard format (5?3=_) than in the addition format (5=3+_). The results indicate that educated adults often use addition reference to solve large simple subtraction problems, but that they rely on direct memory retrieval for small subtractions.  相似文献   

10.
This study investigated longitudinal pathways leading from early spatial skills in first-grade girls to their fifth-grade analytical math reasoning abilities (= 138). First-grade assessments included spatial skills, verbal skills, addition/subtraction skills, and frequency of choice of a decomposition or retrieval strategy on the addition/subtraction problems. In fifth grade, girls were given an arithmetic fluency test, a mental rotation spatial task, and a numeric and algebra math reasoning test. Using structural equation modeling, the estimated path model accounted for 87% of the variance in math reasoning. First-grade spatial skills had a direct pathway to fifth-grade math reasoning as well as an indirect pathway through first-grade decomposition strategy use. The total effect of first-grade spatial skills was significantly higher in predicting fifth-grade math reasoning than all other predictors. First-grade decomposition strategy use had the second strongest total effect, while retrieval strategy use did not predict fifth-grade math reasoning. It was first-grade spatial skills (not fifth-grade) that directly predicted fifth-grade math reasoning. Consequently, the results support the importance of early spatial skills in predicting later math. As expected, decomposition strategy use in first grade was linked to fifth-grade math reasoning indirectly through first-grade arithmetic accuracy and fifth-grade arithmetic fluency. However, frequency of first-grade decomposition use also showed a direct pathway to fifth-grade arithmetic reasoning, again stressing the importance of these early cognitive processes on later math reasoning.  相似文献   

11.
It is widely accepted that different number-related tasks, including solving simple addition and subtraction, may induce attentional shifts on the so-called mental number line, which represents larger numbers on the right and smaller numbers on the left. Recently, it has been shown that different number-related tasks also employ spatial attention shifts along with general cognitive processes. Here we investigated for the first time whether number line estimation and complex mental arithmetic recruit a common mechanism in healthy adults. Participants’ performance in two-digit mental additions and subtractions using visual stimuli was compared with their performance in a mental bisection task using auditory numerical intervals. Results showed significant correlations between participants’ performance in number line bisection and that in two-digit mental arithmetic operations, especially in additions, providing a first proof of a shared cognitive mechanism (or multiple shared cognitive mechanisms) between auditory number bisection and complex mental calculation.  相似文献   

12.
In order to understand addition and subtraction fully, children have to know about the relation between these two operations. We looked at this knowledge in two studies. In one we asked whether 5- and 6-year-old children understand that addition and subtraction cancel each other out and whether this understanding is based on the identity of the addend and subtrahend or on their quantity. We showed that children at this age use the inversion principle even when the addend and subtrahend are the same in quantity but involve different material. In our second study we showed that 6- to 8-year-old children also use the inversion in combination with decomposition to solve a + b - (b + 1) problems. In both studies, factor analyses suggested that the children were using different strategies in the control problems, which require computation, than in the inversion problems, which do not. We conclude that young children understand the relations between addition and subtraction and that this understanding may not be based on their computational skills.  相似文献   

13.
We tested whether split effects in arithmetic (i.e., better performance on large-split problems, like 3 + 8 = 16, than on small-split problems, like 3 + 8 = 12) reflect decision processing or strategy selection. To achieve this end, we tested performance of younger and older adults, matched on arithmetic skills, on two arithmetic tasks: the addition/number comparison task (e.g., 4 + 8, 13; which item is the larger?) and in the inequality verification task (e.g., 4 + 8 < 13; Yes/No?). In both tasks, split between additions and proposed numbers were manipulated. We also manipulated the difficulty of the additions, which represents an index of arithmetic fact calculation (i.e., hard problems, like 6 + 8 < 15, are solved more slowly than easy problems, like 2 + 4 < 07, suggesting that calculation takes longer). Analyses of latencies revealed three main results: First, split effects were of smaller magnitude in older adults compared to younger adults, whatever the type of arithmetic task; second, split effects were of smaller magnitude on easy problems; and third, calculation processes were well maintained in older adults with high level of arithmetic skills. This set of results improves our understanding of cognitive aging and strategy selection in arithmetic.  相似文献   

14.
Are negative numbers processed differently from positive numbers in arithmetic problems? In two experiments, adults (N?=?66) solved standard addition and subtraction problems such as 3?+?4 and 7 – 4 and recasted versions that included explicit negative signs—that is, 3 – (–4), 7?+?(–4), and (–4)?+?7. Solution times on the recasted problems were slower than those on standard problems, but the effect was much larger for addition than subtraction. The negative sign may prime subtraction in both kinds of recasted problem. Problem size effects were the same or smaller in recasted than in standard problems, suggesting that the recasted formats did not interfere with mental calculation. These results suggest that the underlying conceptual structure of the problem (i.e., addition vs. subtraction) is more important for solution processes than the presence of negative numbers.  相似文献   

15.
A number of theories of mental arithmetic suggest that the ability to solve simple addition and subtraction problems develops from an algorithmic strategy toward a strategy based on the direct retrieval of the result from memory. In the experiment presented here, 2nd and 12th graders were asked to solve two tasks of number and alphabet arithmetic. The subjects transformed series of 1 to 4 numbers or letters (item span) by adding or subtracting an operand varying from 1 to 4 (operation span). Although both the item and operation span were associated with major and identical effects in the case of both numbers and letters at 2nd grade, such effects were clearly observable only in the case of letters for the adult subjects. This suggests the use of an algorithmic strategy for both types of material in the case of the children and for the letters only in the case of the adults, who retrieved numerical results directly from memory.  相似文献   

16.
In 2012, a study by Sklar et al. reported that participants could solve invisible subtractions. This notion of unconscious arithmetic has been influential because it challenges current theories of consciousness. In 2016, Karpinski et al. published a direct replication reporting evidence for unconscious addition rather than subtraction. About a year later, the study was retracted due to a computation error in the analysis pipeline. After this error was corrected, no evidence for unconscious addition nor subtraction was obtained. Recently, Karpinski et al. republished the study by applying the exclusion criteria used in Sklar et al. The reanalysis found weak evidence for unconscious subtraction. To assess the robustness of these results, we examine how sensitive the results are to data analytic decisions. We outline a set of 250 analyses that we consider justified to perform. We show that none of the analyses indicates evidence for unconscious subtraction.  相似文献   

17.
Studies about strategies used by adults to solve multi-digit written additions are very scarce. However, as advocated here, the specificity and characteristics of written calculations are of undeniable interest. The originality of our approach lies in part in the presentation of two-digit addition problems on a graphics tablet, which allowed us to precisely follow and analyse individuals’ solving process. Not only classic solution times and accuracy measures were recorded but also initiation times and starting positions of the calculations. Our results show that adults largely prefer the fixed columnar strategy taught at school rather than more flexible mental strategies. Moreover, the columnar strategy is executed faster and as accurately as other strategies, which suggests that individuals’ choice is usually well adapted. This result contradicts past educational intuitions that the use of rigid algorithms might be detrimental to performance. We also demonstrate that a minority of adults can modulate their strategy choice as a function of the characteristics of the problems. Tie problems and additions without carry were indeed solved less frequently through the columnar strategy than non-tie problems and additions with a carry. We conclude that the working memory demand of the arithmetic operation influences strategy selection in written problem-solving.  相似文献   

18.
Canobi KH  Bethune NE 《Cognition》2008,108(3):675-686
Three studies addressed children's arithmetic. First, 50 3- to 5-year-olds judged physical demonstrations of addition, subtraction and inversion, with and without number words. Second, 20 3- to 4-year-olds made equivalence judgments of additions and subtractions. Third, 60 4- to 6-year-olds solved addition, subtraction and inversion problems that varied according to the inclusion of concrete referents and number words. The results indicate that number words play a different role in conceptual and procedural development. Children have strong addition and subtraction concepts before they can translate the physical effects of these operations into number words. However, using number words does not detract from their calculation procedures. Moreover, consistent with iterative relations between conceptual and procedural development, the results suggest that inversion acquisition depends on children's calculation procedures and that inversion understanding influences these procedures.  相似文献   

19.
小学生表征数学应用题策略的实验研究   总被引:10,自引:0,他引:10       下载免费PDF全文
通过一个2(成功与否)×2(提示与否)×2(题型)的混合实验设计,对小学五年级学生解决和差应用题的表征策略进行了研究.结果表明:(1)与比较应用题的表征相类似,小学生对和差应用题的表征也存在着直译策略和问题模型策略;(2)不成功组解题者在表征和差应用题时倾向于运用直译策略,而成功组的解题者更倾向于运用问题模型策略,这导致了成功者与不成功者在列式上的差异,特别是在不一致题型上表现得更明显;(3)在读题前给以“请注意理解这道题的意思”这样简单的提示,对不成功的解题者对和差问题的正确表征并不能起到作用;(4)成功的和差应用题解题者和不成功的解题者在列式正确性的自我评价上存在显著差异.  相似文献   

20.
Accurate measurement of cognitive strategies is important in diverse areas of psychological research. Strategy self-reports are a common measure, but C. Thevenot, M. Fanget, and M. Fayol (2007) proposed a more objective method to distinguish different strategies in the context of mental arithmetic. In their operand recognition paradigm, speed of recognition memory for problem operands after solving a problem indexes strategy (e.g., direct memory retrieval vs. a procedural strategy). Here, in 2 experiments, operand recognition time was the same following simple addition or multiplication, but, consistent with a wide variety of previous research, strategy reports indicated much greater use of procedures (e.g., counting) for addition than multiplication. Operation, problem size (e.g., 2 + 3 vs. 8 + 9), and operand format (digits vs. words) had interactive effects on reported procedure use that were not reflected in recognition performance. Regression analyses suggested that recognition time was influenced at least as much by the relative difficulty of the preceding problem as by the strategy used. The findings indicate that the operand recognition paradigm is not a reliable substitute for strategy reports and highlight the potential impact of difficulty-related carryover effects in sequential cognitive tasks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号