首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The visual system scales motion parallax signals with information about absolute distance (M. E. Ono, Rivest, & H. Ono, 1986). The present study was designed to determine whether relative distance cues, which intrinsically provide information about relative distance, contribute to this scaling. In two experiments, two test stimuli, containing an equal extent of motion parallax, were presented simultaneously at a fixed viewing distance. The relative distance cues of dynamic occlusion and motion parallax in the areas surrounding the test stimuli (background motion parallax) and/or relative size were manipulated. The observers reported which of the two parallactic test stimuli appeared to have greater depth, and which appeared to be more distant. The results showed that the test stimulus specified, by the relative distance cues, as being more distant was perceived as having more depth and as being more distant. This indicates that relative distance cues contribute to scaling depth from motion parallax by modifying the information about the absolute distance of objects.  相似文献   

2.
It is possible, in theory, for the simultaneous occurrence of several different relative cues of distances to increase the veridicality of the perception of absolute distance. To test whether this actually occurs, a three-dimensional display was viewed monocularly while moving the head laterally, under conditions in which some error in perceived absolute distance was expected. The perceived absolute distance of the display was measured with the number of relative cues of distance within the display varied. No systematic reduction was found in the error in perceived absolute distance as a consequence of the variation in the number of relative cues. The study provides no evidence that the potential source of absolute distance information provided by relative cues is utilized by the visual system.  相似文献   

3.
Tozawa J  Oyama T 《Perception》2006,35(8):1007-1023
In three experiments we examined the relative effectiveness of motion parallax and two perspective cues for the perception of size and distance. The experimental stimuli consisted of two ellipses (a standard and a comparison) and a horizontal line that indicated the horizon. The subject's task was to report the apparent size and distance of the comparison stimulus relative to the standard stimulus. Two perspective cues were given by the relative heights of the two stimuli and the absolute height of the standard stimulus below the horizon. Motion parallax was defined by both the ratio and the difference in angular velocities between the two stimuli on the display. In experiment 1 we examined the effects of the two perspective cues and the motion parallax. In experiment 2 we eliminated the horizon line, and examined the role of the horizon in size and distance perception. In experiment 3 we separately evaluated the effects of motion parallax and the relative height cues. The results from the three experiments showed that the effect of motion parallax and the two perspective cues were different in three ways. First, the relative effectiveness of motion parallax and the two perspective cues differed for size and distance estimates. For size estimates, the motion parallax was more effective than the perspective cues (experiments 1 and 3). For distance estimates, the motion parallax was as effective as the two perspective cues (experiments 1 and 3). Second, the role of the horizon differed for size and distance estimates. The size estimates were strongly affected by the horizon, while the distance estimates were not affected much by the horizon (experiment 2). Third, the effective perspective cues differed for the size estimates and the distance estimates: size estimates were affected by the perspective cues as a combination of the horizon and relative height; distance estimates were affected by the perspective cues as an interaction between the absolute and relative heights without the horizon line.  相似文献   

4.
We carried out three experiments to examine the influence of field of view and binocular viewing restrictions on absolute distance perception in real-world indoor environments. Few of the classical visual cues provide direct information for accurate absolute distance judgments to points in the environment beyond about 2 m from the viewer. Nevertheless, in previous work it has been found that visually directed walking tasks reveal accurate distance estimations in full-cue real-world environments to distances up to 20 m. In contrast, the same tasks in virtual environments produced with head-mounted displays (HMDs) show large compression of distance. Field of view and binocular viewing are common limitations in research with HMDs, and have been rarely studied under full pictorial-cue conditions in the context of distance perception in the real-world. Experiment 1 showed that the view of one's body and feet on the floor was not necessary for accurate distance perception. In experiment 2 we manipulated the horizontal and the vertical field of view along with head rotation and found that a restricted field of view did not affect the accuracy of distance estimations when head movement was allowed. Experiment 3 showed that performance with monocular viewing was equal to that with binocular viewing. These results have implications for the information needed to scale egocentric distance in the real-world and reduce the support for the hypothesis that a limited field of view or imperfections in binocular image presentation are the cause of the underestimation seen with HMDs.  相似文献   

5.
During everyday life the brain is continuously integrating multiple perceptual cues in order to allow us to make decisions and to guide our actions. In this study we have used a simulated (virtual reality--VR) visual environment to investigate how cues to speed judgments are integrated. There are two sources that could be used to provide signals for velocity constancy: temporal-frequency or distance cues. However, evidence from most psychophysical studies favours temporal-frequency cues. Here we report that two depth cues that provide a relative object--object distance--disparity and motion parallax--can provide a significant input to velocity-constancy judgments, particularly when combined. This result indicates that the second mechanism can also play a significant role in generating velocity constancy. Furthermore, we show that cognitive factors, such as familiar size, can influence the perception of object speed. The results suggest that both low-level cues to spatiotemporal structure and depth, and high-level cues, such as object familiarity, are integrated by the brain during velocity estimation in real-world viewing.  相似文献   

6.
In two experiments we examined the role of visual horizon information on absolute egocentric distance judgments to on-ground targets. Sedgwick [1983, in Human and Machine Vision (New York: Academic Press) pp 425-458] suggested that the visual system may utilize the angle of declination from a horizontal line of sight to the target location (horizon distance relation) to determine absolute distances on infinite ground surfaces. While studies have supported this hypothesis, less is known about the specific cues (vestibular, visual) used to determine horizontal line of sight. We investigated this question by requiring observers to judge distances under degraded vision given an unaltered or raised visual horizon. The results suggest that visual horizon information does influence perception of absolute distances as evident through two different action-based measures: walking or throwing without vision to previously viewed targets. Distances were judged as shorter in the presence of a raised visual horizon. The results are discussed with respect to how the visual system accurately determines absolute distance to objects on a finite ground plane and for their implications for understanding space perception in low-vision individuals.  相似文献   

7.
A veridical estimate of viewing distance is required in order to determine the metric structure of objects from binocular stereopsis. One example of a judgment of metric structure, which we used in our experiment, is the apparently circular cylinder task (E B Johnston, 1991 Vision Research 31 1351-1360). Most studies report underconstancy in this task when the stimulus is defined purely by binocular disparities. We examined the effect of two factors on performance: (i) the richness of the cues to viewing distance (using either a naturalistic setting with many cues to viewing distance or a condition in which the room and the monitors were obscured from view), and (ii) the range of stimulus disparities (cylinder depths) presented during an experimental run. We tested both experienced subjects (who had performed the task many times before under full-cue conditions) and na?ve subjects. Depth constancy was reduced for the na?ve subjects (from 62% to 46%) when the position of the monitors was obscured. Under similar conditions, the experienced subjects showed no reduction in constancy. In a second experiment, using a forced-choice method of constant stimuli, we found that depth constancy was reduced from 64% to 23% in na?ve subjects and from 77% to 55% in experienced subjects when the same set of images was presented at all viewing distances rather than using a set of stimulus disparities proportional to the correct setting. One possible explanation of these results is that, under reduced-cue conditions, the range of disparities presented is used by the visual system as a cue to viewing distance.  相似文献   

8.
Spatial variations of visual-auditory fusion areas   总被引:2,自引:0,他引:2  
Godfroy M  Roumes C  Dauchy P 《Perception》2003,32(10):1233-1245
The tolerance to spatial disparity between two synchronous visual and auditory components of a bimodal stimulus has been investigated in order to assess their respective contributions to perceptual fusion. The visual and auditory systems each have specific information-processing mechanisms, and provide different cues for scene perception, with the respective dominance of space for vision and of time for hearing. A broadband noise burst and a spot of light, 500 ms in duration, have been simultaneously presented to participants who had to judge whether these cues referred to a single spatial event. We examined the influence of (i) the range and the direction of spatial disparity between the visual and auditory components of a stimulation and (ii) the eccentricity of the bimodal stimulus in the observer's perceptual field. Size and shape properties of visual-auditory fusion areas have been determined in two dimensions. The greater the eccentricity within the perceptual field, the greater the dimension of these areas; however, this increase in size also depends on whether the direction of the disparity is vertical or horizontal. Furthermore, the relative location of visual and auditory signals significantly modifies the perception of unity in the vertical plane. The shape of the fusion areas, their variation in the field, and the perceptual result associated with the relative location of the visual and auditory components of the stimulus, concur towards a strong contribution of audition to visual-auditory fusion. The spatial ambiguity of the localisation capabilities of the auditory system may play a more essential role than accurate visual resolution in determining fusion.  相似文献   

9.
Most ground surfaces contain various types of texture gradient information that serve as depth cues for space perception. We investigated how linear perspective, a type of texture gradient information on the ground, affects judged absolute distance and eye level. Phosphorescent elements were used to display linear perspective information on the floor in an otherwise dark room. We found that observers were remarkably receptive to such information. Changing the configuration of the linear perspective information from parallel to converging resulted in relatively larger judged distances and lower judged eye levels. These findings support the proposals that (1) the visual system has a bias for representing an image of converging lines as one of parallel lines on a downward-slanting surface and (2) the convergence point of a converging-lines image represents the eye level. Finally, we found that the visual system may be less sensitive to the manipulation of compression gradient information than of linear perspective information.  相似文献   

10.
Masking of and by tactile pressure stimuli was investigated in six Ss as a function of stimulus intensity (force) and stimulus onset asynchrony. Increase in the force of the masked stimulus and decrease in the force of the masking stimulus were inversely related to the magnitude of masking, as defined by either a relative or an absolute decrease in sensitivity. The introduction of stimulus onset asynchrony produced both forward and backward masking, the latter being of somewhat larger magnitude. Comparisons are made with results obtained in visual metacontrast masking.  相似文献   

11.
We investigated the perception of distance of visual targets with constant size and luminance presented between 20 and 120 cm from subjects' eyes. When retinal disparity cues were present, the subjects could reproduce very accurately the distance of a seen reference in this area. When only extraretinal information was available, distance perception was still correct for distances of 40 cm or less. However, distances beyond 60 cm were underestimated. When forced to evaluate the distance between a reference and themselves, e.g. when evaluating the absolute distance or half the distance or twice the distance of a reference, subjects used an egocentric plane of reference located on average 10.4 cm in front of their eyes. Measurements of binocular eye movements indicated a clear relationship between vergence angle and target distance. The egocentric plane of reference at 10.4 cm also corresponds to the maximum achievable vergence. These results suggest that ocular convergence can be used as a reliable cue for distance within the arm's reaching space.  相似文献   

12.
Egocentric distance perception is a psychological process in which observers use various depth cues to estimate the distance between a target and themselves. The impairment of basic visual function and treatment of amblyopia have been well documented. However, the disorder of egocentric distance perception of amblyopes is poorly understood. In this review, we describe the cognitive mechanism of egocentric distance perception, and then, we focus on empirical evidence for disorders in egocentric distance perception for amblyopes in the whole visual space. In the personal space (within 2 m), it is difficult for amblyopes to show normal hand-eye coordination; in the action space (within 2 m~30 m), amblyopes cannot accurately judge the distance of a target suspended in the air. Few studies have focused on the performance of amblyopes in the vista space (more than 30 m). Finally, five critical topics for future research are discussed: 1) it is necessary to systematically explore the mechanism of egocentric distance perception in all three spaces; 2) the laws of egocentric distance perception in moving objects for amblyopes should be explored; and 3) the comparison of three subtypes of amblyopia is still insufficient; 4) study the perception of distance under another theoretical framework; 5) explore the mechanisms of amblyopia by Virtual Reality.  相似文献   

13.
Keeping it short: a comparison of methods for brief picture presentation   总被引:1,自引:0,他引:1  
Abstract— Research has shown that backward masking is a powerful tool for studying unconscious mental processes. Whereas studies have traditionally presented stimuli using cathode-ray tube (CRT) monitors or mechanical shutters together with slide projectors, recent studies (mainly in functional magnetic resonance imaging, fMRI) have begun to use methods based on liquid crystal displays (LCDs) and thin-film transistor (TFT) technology. However, because of differences in technology, all methods may not be equally suited for masking. When methods were compared for their accuracy in presenting pictures at short durations, LCD and TFT presentations had poor accuracy, but shutter and CRT presentations had better accuracy. Because CRTs interfere with the imaging process in fMRI, we recommend the use of mechanical shutters. However, our results may not generally apply to all displays, so we advise researchers to validate the presentation parameters of their displays. The procedure described here may be useful for that purpose.  相似文献   

14.
The overestimation of geographical slant is one of the most sizable visual illusions. However, in some cases estimates of close-by slopes within the range of the observer’s personal space have been found to be rather accurate. We propose that the seemingly diverse findings can be reconciled when taking the viewing distance of the observer into account. The latter involves the distance of the observer from the slope (personal space, action space, and vista space) and also the eye-point relative to the slope. We separated these factors and compared outdoor judgments to those collected with a three-dimensional (3D) model of natural terrain, which was within arm’s reach of the observer. Slope was overestimated in the outdoors at viewing distances between 2 m and 138 m. The 3D model reproduced the errors in monocular viewing; however, performance was accurate with stereoscopic viewing. We conclude that accurate slant perception breaks down as soon as the situation exits personal space, be it physically or be it by closing one eye.  相似文献   

15.
16.
Dependency of perceived depth (relative to the fixation point) on disparity, viewing distance, and the type of the stereoscopic stimulus was investigated. Nearly complete constancy of depth, as required for a veridically matched perception, was observed only at small disparity values and with the larger square-formed stimulus; under these conditions, perceived depth corresponded well with real depth intervals for close viewing distances. Additionally, a model for perceptual processing of both variables, disparity and viewing distance, was applied to the data.  相似文献   

17.

Both auditory intensity and reverberation have previously been shown to be sufficient to produce systematically varying judgments of perceived distance when several values of the variable are presented repeatedly to the same observer. Such studies do not, however, indicate clearly whether these cues are functioning in an absolute or in a relative manner. An absolute cue to auditory distance would require that two groups presented with different values of the variable in question should report different values of perceived distance. Two experiments are reported in which intensity variation and reverberation are examined. The results showed that auditory intensity differences over a range of 20 dB did not serve as an absolute cue to auditory distance, but could serve as a strong cue to changes in such distance. A comparison of data obtained in a normally reverberatory setting (Experiment 1) and an anechoic chamber (Experiment 2) indicated that the state of reverberation could serve as an absolute cue, with greater reverberation being associated with greater perceived distances. Some of the results were discussed in terms of the possibility that the specific distance tendency (a concept developed to handle some phenomena in visual space perception) might have applicability to the study of auditory perceived distance as well.

  相似文献   

18.
This study examines the change in the perceived distance of an object in three-dimensional space when the object and/or the observer's head is moved along the line of sight (sagittal motion) as a function of the perceived absolute (egocentric) distance of the object and the perceived motion of the head. To analyze the processes involved, two situations, labeled A and B, were used in four experiments. In Situation A, the observer was stationary and the perceived motion of the object was measured as the object was moved toward and away from the observer. In Situation B, the same visual information regarding the changing perceived egocentric distance between the observer and object was provided as in Situation A, but part or all of the change in visual egocentric distance was produced by the sagittal motion of the observer's head. A comparison of the perceived motion of the object in the two situations was used to measure the compensation in the perception of the motion of the object as a result of the head motion. Compensation was often clearly incomplete, and errors were often made in the perception of the motion of the stimulus object. A theory is proposed, which identifies the relation between the changes in the perceived egocentric distance of the object and the tandem motion of the object resulting from the perceived motion of the head to be the significant factor in the perception of the sagittal motion of the stimulus object in Situation B.  相似文献   

19.
This study examines the change in the perceived distance of an object in three-dimensional space when the object andlor the observer’s head is moved along the line of sight (sagittal motion) as a function of the perceived absolute (egocentric) distance of the object and the perceived motion of the head. To analyze the processes involved, two situations, labeled A and B, were used in four experiments. In Situation A, the observer was stationary and the perceived motion of the object was measured as the object was moved toward and away from the observer. In Situation B, the same visual information regarding the changing perceived egocentric distance between the observer and object was provided as in Situation A, but part or all of the change in visual egocentric distance was produced by the sagittal motion of the observer’s head. A comparison of the perceived motion of the object in the two situations was used to measure the compensation in the perception of the motion of the object as a result of the headmotion. Compensation was often clearly incomplete, and errors were often made in the perception of the motion of the stimulus object. A theory is proposed, which identifies the relation between the changes in the perceived egocentric distance of the object and the tandem motion of the object resulting from the perceived motion of the head to be the significant factor in the perception of the sagittal motion of the stimulus object in Situation B.  相似文献   

20.
Classically, it has been assumed that visual space can be represented by a metric. This means that the distance between points and the angle between lines can be uniquely defined. However, this assumption has never been tested. Also, measurements outdoors, where monocular cues are abundant, conflict with this model. This paper reports on two experiments in which the structure of visual space was investigated, using an exocentric pointing task. In the first experiment, we measured the influence of the separation between pointer and target and of the orientation of the stimuli with respect to the observer. This was done both monocularly and binocularly. It was found that the deviation of the pointer settings depended linearly on the orientation, indicating that visual space is anisotropic. The deviations for configurations that were symmetrical in the median plane were approximately the same, indicating that left/right symmetry was maintained. The results for monocular and binocular conditions were very different, which indicates that stereopsis was an important cue. In both conditions, there were large deviations from the veridical. In the second experiment, the relative distance of the pointer and the target with respect to the observer was varied in both the monocular and the binocular conditions. The relative distance turned out to be the main parameter for the ranges used (1-5 m). Any distance function must have an expanding and a compressing part in order to describe the data. In the binocular case, the results were much more consistent than in the monocular case and had a smaller standard deviation. Nevertheless, the systematic mispointings remained large. It can therefore be concluded that stereopsis improves space perception but does not improve veridicality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号