首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Philip Kremer 《Studia Logica》2016,104(3):487-502
The simplest combination of unimodal logics \({\mathrm{L}_1 \rm and \mathrm{L}_2}\) into a bimodal logic is their fusion, \({\mathrm{L}_1 \otimes \mathrm{L}_2}\), axiomatized by the theorems of \({\mathrm{L}_1 \rm for \square_1 \rm and of \mathrm{L}_2 \rm for \square_{2}}\). Shehtman introduced combinations that are not only bimodal, but two-dimensional: he defined 2-d Cartesian products of 1-d Kripke frames, using these Cartesian products to define the frame product\({\mathrm{L}_1 \times \mathrm{L}_2 \rm of \mathrm{L}_1 \rm and \mathrm{L}_2}\). Van Benthem, Bezhanishvili, ten Cate and Sarenac generalized Shehtman’s idea and introduced the topological product\({\mathrm{L}_1 \times_{t}\mathrm{L}_2}\), using Cartesian products of topological spaces rather than of Kripke frames. Frame products have been extensively studied, but much less is known about topological products. The goal of the current paper is to give necessary and sufficient conditions for the topological product to match the frame product, for Kripke complete extensions of \({\mathrm{S}4: \mathrm{L}_1 \times_t \mathrm{L}_2 = \mathrm{L}_1 \times \mathrm{L}_2 \rm iff \mathrm{L}_1 \supsetneq \mathrm{S}5 \rm or \mathrm{L}_2 \supsetneq \mathrm{S}5 \rm or \mathrm{L}_1, \mathrm{L}_2 = \mathrm{S}5}\).  相似文献   

2.
Orthomodular lattices with a two-valued Jauch–Piron state split into a generalized orthomodular lattice (GOML) and its dual. GOMLs are characterized as a class of L-algebras, a quantum structure which arises in the theory of Garside groups, algebraic logic, and in connections with solutions of the quantum Yang–Baxter equation. It is proved that every GOML X embeds into a group G(X) with a lattice structure such that the right multiplications in G(X) are lattice automorphisms. Up to isomorphism, X is uniquely determined by G(X), and the embedding \(X\hookrightarrow G(X)\) is a universal group-valued measure on X.  相似文献   

3.
This work extend to residuated lattices the results of [7]. It also provides a possible generalization to this context of frontal operators in the sense of [9]. Let L be a residuated lattice, and f : L k ?? L a function. We give a necessary and sufficient condition for f to be compatible with respect to every congruence on L. We use this characterization of compatible functions in order to prove that the variety of residuated lattices is locally affine complete. We study some compatible functions on residuated lattices which are a generalization of frontal operators. We also give conditions for two operations P(x, y) and Q(x, y) on a residuated lattice L which imply that the function ${x \mapsto min\{y \in L : P(x, y) \leq Q(x, y)\}}$ when defined, is equational and compatible. Finally we discuss the affine completeness of residuated lattices equipped with some additional operators.  相似文献   

4.
5.
Ja?kowski’s discussive logic D2 was formulated with the help of the modal logic S5 as follows (see [7, 8]): \({A \in {D_{2}}}\) iff \({\ulcorner\diamond{{A}^{\bullet}}\urcorner \in {\rm S}5}\), where (–)? is a translation of discussive formulae from Ford into the modal language. We say that a modal logic L defines D2 iff \({{\rm D}_{2} = \{A \in {\rm For^{\rm d}} : \ulcorner\diamond{{A}^{\bullet}}\urcorner \in {\it L}\}}\). In [14] and [10] were respectively presented the weakest normal and the weakest regular logic which (?): have the same theses beginning with ‘\({\diamond}\)’ as S5. Of course, all logics fulfilling the above condition, define D2. In [10] it was prowed that in the cases of logics closed under congruence the following holds: defining D2 is equivalent to having the property (?). In this paper we show that this equivalence holds also for all modal logics which are closed under replacement of tautological equivalents (rte-logics).We give a general method which, for any class of modal logics determined by a set of joint axioms and rules, generates in the given class the weakest logic having the property (?). Thus, for the class of all modal logics we obtain the weakest modal logic which owns this property. On the other hand, applying the method to various classes of modal logics: rte-logics, congruential, monotonic, regular and normal, we obtain the weakest in a given class logic defining D2.  相似文献   

6.
An equivalence between the category of MV-algebras and the category \({{\rm MV^{\bullet}}}\) is given in Castiglioni et al. (Studia Logica 102(1):67–92, 2014). An integral residuated lattice with bottom is an MV-algebra if and only if it satisfies the equations \({a = \neg \neg a, (a \rightarrow b) \vee (b\rightarrow a) = 1}\) and \({a \odot (a\rightarrow b) = a \wedge b}\). An object of \({{\rm MV^{\bullet}}}\) is a residuated lattice which in particular satisfies some equations which correspond to the previous equations. In this paper we extend the equivalence to the category whose objects are pairs (A, I), where A is an MV-algebra and I is an ideal of A.  相似文献   

7.
8.
In this paper we shall introduce two types of contextual-hierarchical (from now on abbreviated by ‘ch’) approaches to the strengthened liar problem. These approaches, which we call the ‘standard’ and the ‘alternative’ ch-reconstructions of the strengthened liar problem, differ in their philosophical view regarding the nature of truth and the relation between the truth predicates T r n and T r n+1 of different hierarchy-levels. The basic idea of the standard ch-reconstruction is that the T r n+1-schema should hold for all sentences of \(\mathcal {L}^{n}\). In contrast, the alternative ch-reconstruction, for which we shall argue in section four, is motivated by the idea that T r n and T r n+1 are coherent in the sense that the same sentences of \(\mathcal {L}^{n}\) should be true according to T r n and T r n+1. We show that instances of the standard ch-reconstruction can be obtained by iterating Kripke’s strong Kleene jump operator. Furthermore, we will demonstrate how instances of the alternative ch-reconstruction can be obtained by a slight modification of the iterated axiom system KF and of the iterated strong Kleene jump operator.  相似文献   

9.
10.
Philip Kremer 《Studia Logica》2018,106(6):1097-1122
The simplest bimodal combination of unimodal logics \(\text {L} _1\) and \(\text {L} _2\) is their fusion, \(\text {L} _1 \otimes \text {L} _2\), axiomatized by the theorems of \(\text {L} _1\) for \(\square _1\) and of \(\text {L} _2\) for \(\square _2\), and the rules of modus ponens, necessitation for \(\square _1\) and for \(\square _2\), and substitution. Shehtman introduced the frame product \(\text {L} _1 \times \text {L} _2\), as the logic of the products of certain Kripke frames: these logics are two-dimensional as well as bimodal. Van Benthem, Bezhanishvili, ten Cate and Sarenac transposed Shehtman’s idea to the topological semantics and introduced the topological product \(\text {L} _1 \times _t \text {L} _2\), as the logic of the products of certain topological spaces. For almost all well-studies logics, we have \(\text {L} _1 \otimes \text {L} _2 \subsetneq \text {L} _1 \times \text {L} _2\), for example, \(\text {S4} \otimes \text {S4} \subsetneq \text {S4} \times \text {S4} \). Van Benthem et al. show, by contrast, that \(\text {S4} \times _t \text {S4} = \text {S4} \otimes \text {S4} \). It is straightforward to define the product of a topological space and a frame: the result is a topologized frame, i.e., a set together with a topology and a binary relation. In this paper, we introduce topological-frame products \(\text {L} _1 \times _ tf \text {L} _2\) of modal logics, providing a complete axiomatization of \(\text {S4} \times _ tf \text {L} \), whenever \(\text {L} \) is a Kripke complete Horn axiomatizable extension of the modal logic D: these extensions include \(\text {T} , \text {S4} \) and \(\text {S5} \), but not \(\text {K} \) or \(\text {K4} \). We leave open the problem of axiomatizing \(\text {S4} \times _ tf \text {K} \), \(\text {S4} \times _ tf \text {K4} \), and other related logics. When \(\text {L} = \text {S4} \), our result confirms a conjecture of van Benthem et al. concerning the logic of products of Alexandrov spaces with arbitrary topological spaces.  相似文献   

11.
12.
Let A be an algebra. We say that the functions f 1, . . . , f m : A n ?? A are algebraic on A provided there is a finite system of term-equalities ${{\bigwedge t_{k}(\overline{x}, \overline{z}) = s_{k}(\overline{x}, \overline{z})}}$ satisfying that for each ${{\overline{a} \in A^{n}}}$ , the m-tuple ${{(f_{1}(\overline{a}), \ldots , f_{m}(\overline{a}))}}$ is the unique solution in A m to the system ${{\bigwedge t_{k}(\overline{a}, \overline{z}) = s_{k}(\overline{a}, \overline{z})}}$ . In this work we present a collection of general tools for the study of algebraic functions, and apply them to obtain characterizations for algebraic functions on distributive lattices, Stone algebras, finite abelian groups and vector spaces, among other well known algebraic structures.  相似文献   

13.
We motivate and introduce a new method of abduction, Matrix Abduction, and apply it to modelling the use of non-deductive inferences in the Talmud such as Analogy and the rule of Argumentum A Fortiori. Given a matrix \({\mathbb {A}}\) with entries in {0, 1}, we allow for one or more blank squares in the matrix, say a i,j =?. The method allows us to decide whether to declare a i,j = 0 or a i,j = 1 or a i,j =? undecided. This algorithmic method is then applied to modelling several legal and practical reasoning situations including the Talmudic rule of Kal-Vachomer. We add an Appendix showing that this new rule of Matrix Abduction, arising from the Talmud, can also be applied to the analysis of paradoxes in voting and judgement aggregation. In fact we have here a general method for executing non-deductive inferences.  相似文献   

14.
Gaisi Takeuti has recently proposed a new operation on orthomodular latticesL, \(\begin{array}{*{20}c} \parallel \\ \_ \\ \end{array} \) :P(LL. The properties of \(\begin{array}{*{20}c} \parallel \\ \_ \\ \end{array} \) suggest that the value of \(\begin{array}{*{20}c} \parallel \\ \_ \\ \end{array} \) (A) (A) \( \subseteq \) L) corresponds to the degree in which the elements ofA behave classically. To make this idea precise, we investigate the connection between structural properties of orthomodular latticesL and the existence of two-valued homomorphisms onL.  相似文献   

15.
Two ordinal consequences are drawn from the linear multiple-factor analysis model. First, the numberR(s, d) of distinct ways in whichs subjects can be ranked by linear functions ofd factors is limited by the recursive expressionR(s, d)=R(s?1,d)+(s?1)R(s?1,d?1). Second, every setS ofd+2 subjects can be separated into two subsetsS* andS ? S* such that no linear function ofd variables can rank allS* over allS ? S*, and vice versa. When these results are applied to the hypothetical data of Thurstone's “box problem,” three independent parameters are found. Relations to Thurstone's suggestion for a non-correlational factor analysis are discussed.  相似文献   

16.
The paper suggests a modal predicate logic that deals with classical quantification and modalities as well as intermediate operators, like “most” and “mostly”. Following up the theory of generalized quantifiers, we will understand them as two-placed operators and call them determiners. Quantifiers as well as modal operators will be constructed from them. Besides the classical deduction, we discuss a weaker probabilistic inference “therefore, probably” defined by symmetrical probability measures in Carnap’s style. The given probabilistic inference relates intermediate quantification to singular statements: “Most S are P” does not logically entail that a particular individual S is also P, but it follows that this is probably the case, where the probability is not ascribed to the propositions but to the inference. We show how this system deals with single case expectations while predictions of statistical statements remain generally problematic.  相似文献   

17.
Taishi Kurahashi 《Studia Logica》2018,106(6):1181-1196
We prove that for each recursively axiomatized consistent extension T of Peano Arithmetic and \(n \ge 2\), there exists a \(\Sigma _2\) numeration \(\tau (u)\) of T such that the provability logic of the provability predicate \(\mathsf{Pr}_\tau (x)\) naturally constructed from \(\tau (u)\) is exactly \(\mathsf{K}+ \Box (\Box ^n p \rightarrow p) \rightarrow \Box p\). This settles Sacchetti’s problem affirmatively.  相似文献   

18.
19.
Joost J. Joosten 《Studia Logica》2016,104(6):1225-1243
Turing progressions have been often used to measure the proof-theoretic strength of mathematical theories: iterate adding consistency of some weak base theory until you “hit” the target theory. Turing progressions based on n-consistency give rise to a \({\Pi_{n+1}}\) proof-theoretic ordinal \({|U|_{\Pi^0_{n+1}}}\) also denoted \({|U|_n}\). As such, to each theory U we can assign the sequence of corresponding \({\Pi_{n+1}}\) ordinals \({\langle |U|_n\rangle_{n > 0}}\). We call this sequence a Turing-Taylor expansion or spectrum of a theory. In this paper, we relate Turing-Taylor expansions of sub-theories of Peano Arithmetic to Ignatiev’s universal model for the closed fragment of the polymodal provability logic \({\mathsf{GLP}_\omega}\). In particular, we observe that each point in the Ignatiev model can be seen as Turing-Taylor expansions of formal mathematical theories. Moreover, each sub-theory of Peano Arithmetic that allows for a Turing-Taylor expansion will define a unique point in Ignatiev’s model.  相似文献   

20.
In this paper we shall introduce the variety FWHA of frontal weak Heyting algebras as a generalization of the frontal Heyting algebras introduced by Leo Esakia in [10]. A frontal operator in a weak Heyting algebra A is an expansive operator τ preserving finite meets which also satisfies the equation ${\tau(a) \leq b \vee (b \rightarrow a)}$ , for all ${a, b \in A}$ . These operators were studied from an algebraic, logical and topological point of view by Leo Esakia in [10]. We will study frontal operators in weak Heyting algebras and we will consider two examples of them. We will give a Priestley duality for the category of frontal weak Heyting algebras in terms of relational spaces ${\langle X, \leq, T, R \rangle}$ where ${\langle X, \leq, T \rangle}$ is a WH-space [6], and R is an additional binary relation used to interpret the modal operator. We will also study the WH-algebras with successor and the WH-algebras with gamma. For these varieties we will give two topological dualities. The first one is based on the representation given for the frontal weak Heyting algebras. The second one is based on certain particular classes of WH-spaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号