首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inter-segmental coordination can be influenced by chronic low back pain (CLBP). The sagittal plane lower extremities inter-segmental coordination pattern and variability, in conjunction with the pelvis and trunk, were assessed in subjects with and without non-specific CLBP during free-speed walking. Kinematic data were collected from 10 non-specific CLBP and 10 non-CLBP control volunteers while the subjects were walking at their preferred speed. Sagittal plane time-normalized segmental angles and velocities were used to calculate continuous relative phase for each data point. Mean absolute relative phase (MARP) and deviation phase (DP) were derived to quantify the trunk-pelvis and bilateral pelvis-thigh, thigh-shank and shank-foot coordination pattern and variability over the stance and swing phases of gait. Mann-Whitney U test was employed to compare the means of DP and MARP values between two groups (same side comparison). Statistical analysis revealed more in-phase/less variable trunk-pelvis coordination in the CLBP group (P < 0.05). CLBP group demonstrated less variable right or left pelvis-thigh coordination pattern (P < 0.05). Moreover, the left thigh-shank and left shank-foot MARP values in the CLBP group, were more in-phase than left MARP values in the non-CLBP control group during the swing phase (P < 0.05). In conclusion, the sagittal plane lower extremities, pelvis and trunk coordination pattern and variability could be generally affected by CLBP during walking. These changes can be possible compensatory strategies of the motor control system which can be considered in the CLBP subjects.  相似文献   

2.
Multiple joint interactions are critical to produce stable coordinated movements and can be influenced by low back pain and task conditions. Inter-segmental coordination pattern and variability were assessed in subjects with and without chronic nonspecific low back pain (CNSLBP). Kinematic data were collected from 22 CNSLBP and 22 healthy volunteers during repeated trunk flexion–extension in various conditions of symmetry, velocity, and loading; each at two levels. Sagittal plane angular data were time normalized and used to calculate continuous relative phase for each data point. Mean absolute relative phase (MARP) and deviation phase (DP) were derived to quantify lumbar–pelvis and pelvis–thigh coordination patterns and variability. Statistical analysis revealed more in-phase coordination pattern in CNSLBP (p = 0.005). There was less adaptation in the DP for the CNSLBP group, as shown by interactions of Group by Load (p = .008) and Group by Symmetry by Velocity (p = .03) for the DP of pelvis–thigh and lumbar–pelvis couplings, respectively. Asymmetric (p < 0.001) and loaded (p = 0.04) conditions caused less in-phase coordination. Coordination variability was higher during asymmetric and low velocity conditions (p < 0.001). In conclusion, coordination pattern and variability could be influenced by trunk flexion–extension conditions. CNSLBP subjects demonstrated less adaptability of movement pattern to the demands of the flexion–extension task.  相似文献   

3.
The current study investigated interlimb coordination in individuals with traumatic brain injury (TBI) during overground walking. The study involved 10 participants with coordination, balance, and gait abnormalities post-TBI, as well as 10 sex- and age-matched healthy control individuals. Participants walked 12 m under two experimental conditions: 1) at self-selected comfortable walking speeds; and 2) with instructions to increase the amplitude and out-of-phase coordination of arm swinging. The gait was assessed with a set of spatiotemporal and kinematic parameters including the gait velocity, step length and width, double support time, lateral displacement of the center of mass, the amplitude of horizontal trunk rotation, and angular motions at shoulder and hip joints in sagittal plane. Interlimb coordination (coupling) was analyzed as the relative phase angles between the left and right shoulders, hips, and contralateral shoulders and hips, with an ideal out-of-phase coupling of 180° and ideal in-phase coupling of 0°. The TBI group showed much less interlimb coupling of the above pairs of joint motions than the control group. When participants were required to increase and synchronize arm swinging, coupling between shoulder and hip motions was significantly improved in both groups. Enhanced arm swinging was associated with greater hip and shoulder motion amplitudes, and greater step length. No other significant changes in spatiotemporal or kinematic gait characteristics were found in either group. The results suggest that arm swinging may be a gait parameter that, if controlled properly, can improve interlimb coordination during overground walking in patients with TBI.  相似文献   

4.
Previous research had examined the effects of back pain on spinal movements, but information concerning movement coordination between the lumbar spine and hips was limited. The purpose of this study was to examine the effects of back pain and limitation in straight leg raise on the relationship between the movements of the lumbar spine and hip. An electromagnetic tracking system was employed to measure the movements of these joints in asymptomatic subjects (n = 20), and back pain subjects with (n = 24) and without (n = 17) limitation in straight leg raise. Subjects were requested to perform forward, backward and side bending, and twisting of the trunk. Back pain subjects were found to exhibit significant reductions in the magnitude of spine movements in all directions. Back pain was also associated with decrease in the magnitude of hip flexion but not hip movements in other directions. Cross-correlation analysis showed that there were changes in the strength of correlation and the time lag between lumbar spine and hip motions in normal and back pain subjects. In addition, back pain and limitation in straight leg raise were found to cause significant increases in the time required to complete the trunk movements. It was concluded that clinical assessment and treatment planning should take into account of the effects of back pain on the relationship between spine and hip movements.  相似文献   

5.
This study examined coordination of the spine and pelvis during lateral bending of the trunk in older adults. Thirty-four healthy subjects (17 young and 17 older adults) demonstrated lateral bending at a controlled speed while holding a bar at approximately 180 degrees of shoulder flexion. Kinematic data collection was completed on the thoracic spine, lumbar spine, and pelvis. The coupling angle was calculated to examine the thorax–lumbar, lumbar–pelvis, and thorax–pelvis coordination patterns. The older adults demonstrated a reduced range of motion (ROM) of the lumbar spine, while both groups revealed similar ROM in the thorax and in the pelvis. The coupling angle between the straightening and bending phases was different only for the older adults in the thorax–lumbar (23.4 ± 8.0 vs. −1.6 ± 4.4, p = 0.004) and the lumbar–pelvis (65.4 ± 7.2 vs. 86.1 ± 7.8, p = 0.001) coordination. However, there was no group difference in the thorax–pelvis coordination. These findings indicate that age-related changes in the lumbar region affect coordination patterns only during the bending phase. The older adults preserved a similar pattern of movement to the young adults during the straightening phase, but the coordination variability of the coupling angles was greater for the older adults than for the young adults. This movement pattern suggests that the older adults lacked consistent trunk control in an attempt to optimize lateral bending coordination.  相似文献   

6.
Donker SF  Beek PJ 《Acta psychologica》2002,110(2-3):265-288
The present study focuses on interlimb coordination in walking with an above-knee prosthesis using concepts and tools of dynamical systems theory (DST). Prosthetic walkers are an interesting group to investigate from this theory because their locomotory system is inherently asymmetric, while, according to DST, coordinative stability may be expected to be reduced as a function of the asymmetry of the oscillating components. Furthermore, previous work on locomotion motivated from DST has shown that the stability of interlimb coordination increases with walking velocity, leading to the additional expectation that the anticipated destabilizing effect of the prosthesis-induced asymmetry may be diminished at higher walking velocities. To examine these expectations, an experiment was conducted aimed at comparing interlimb coordination during treadmill walking between seven participants with an above-knee prosthesis and seven controls across a range of walking velocities. The observed gait patterns were analyzed in terms of standard gait measures (i.e., absolute and relative swing, stance and step times) and interlimb coordination measures (i.e., relative phase and frequency locking). As expected, the asymmetry brought about by the prosthesis led to a decrease in the stability of the coordination between the legs as compared to the control group, while coordinative stability increased with increasing walking velocity in both groups in the absence of a significant interaction. In addition, the 2:1 frequency coordination between arm and leg movements that is generally observed in healthy walkers at low walking velocities was absent in the prosthetic walkers. Collectively, these results suggest that both stability and adaptability of coordination are reduced in prosthetic walkers but may be enhanced by training them to walk at higher velocities.  相似文献   

7.
The authors studied the development of postural adjustments associated with the initiation of gait in children by using kinematic and electromyographic (EMG) analysis. Participants (N = 28) included infants with 1-4 and 9-17 months of walking experience, children 4-5 years of age, and adults. Anticipatory postural adjustments (APA) were present in the youngest age groups, including a clear anticipatory lateral tilt of the pelvis and the stance leg, which enabled the child to unload the opposite leg shortly before its swing phase. An anticipatory activation of the hip abductor of the leg in stance phase prior to heel-off was found, suggesting pelvis stabilization. APA did not appear consistently until 4-5 years of age. A decrease in segmental oscillations occurred across the ages, indicating better control of intersegmental coordination in the frontal and sagittal planes during the postural phase of gait initiation. Young walkers presented APA involving movements of both the upper and the lower parts of the body, whereas, like adults, 4- to 5-year-olds were able to laterally shift only the pelvis and the stance leg. The oldest children and the adults also showed lower activation levels of hip and knee muscles but higher activation at the ankle level. Those kinematic and EMG results taken together suggest a clear developmental sequence from an en bloc operation of the body through an articulated operation with maturation, walking experience, or both.  相似文献   

8.
The authors studied the development of postural adjustments associated with the initiation of gait in children by using kinematic and electromyographic (EMG) analysis. Participants (N = 28) included infants with 1-4 and 9-17 months of walking experience, children 4-5 years of age, and adults. Anticipatory postural adjustments (APA) were present in the youngest age groups, including a clear anticipatory lateral tilt of the pelvis and the stance leg, which enabled the child to unload the opposite leg shortly before its swing phase. An anticipatory activation of the hip abductor of the leg in stance phase prior to heel-off was found, suggesting pelvis stabilization. APA did not appear consistently until 4-5 years of age. A decrease in segmental oscillations occurred across the ages, indicating better control of intersegmental coordination in the frontal and sagittal planes during the postural phase of gait initiation. Young walkers presented APA involving movements of both the upper and the lower parts of the body, whereas, like adults, 4- to 5-year-olds were able to laterally shift only the pelvis and the stance leg. The oldest children and the adults also showed lower activation levels of hip and knee muscles but higher activation at the ankle level. Those kinematic and EMG results taken together suggest a clear developmental sequence from an en bloc operation of the body through an articulated operation with maturation, walking experience, or both.  相似文献   

9.
The ability to adapt anticipatory postural adjustments (APAs) in response to perturbations during single-joint movements is altered in people with chronic low back pain (LBP), but a comprehensive analysis during functional motor tasks is still missing. This study aimed to compare APAs and stepping characteristics during gait initiation between people with LBP and healthy controls, both in normal (without cue occurrence) condition and when an unexpected visual cue required to switch the stepping limb. Fourteen individuals with LPB and 10 healthy controls performed gait initiation in normal and switch conditions. The postural responses were evaluated through the analysis of center of pressure, propulsive ground reaction forces, trunk and whole-body kinematics, and activation onsets of leg and back muscles. During normal gait initiation, participants with LBP exhibited similar APAs and stepping characteristics to healthy controls. In the switch condition, individuals with LBP were characterized by greater mediolateral postural stability but decreased forward body motion and propulsion before stepping. The thorax motion was associated with forward propulsion parameters in both task conditions in people with LBP but not healthy controls. No between-group differences were found in muscle activation onsets. The results suggest that postural stability is prioritized over forward locomotion in individuals with LBP. Furthermore, the condition-invariant coupling between thorax and whole-body forward propulsion in LBP suggests an adaptation in the functional use of the thorax within the postural strategy, even in poor balance conditions.  相似文献   

10.
Spinal dynamics during gait have been of interest in research for many decades. Based on respective previous investigations, the pelvis is generally expected to be maximally forward rotated on the side of the reference leg at the beginning of each gait cycle and to reach its maximum counterrotation approximately at the end of the reference leg’s stance phase. The pelvic–upper-thoracic-spine coordination converges towards an anti-phase movement pattern in high velocities during ambulation. The vertebral bodies around the seventh thoracic vertebra are considered to be an area of transition during human ambulation where no or at least little rotary motion can be observed. The respective cranial and caudal vertebrae meanwhile are expected to rotate conversely around this spinal point of intersection. However, these previous assumptions are based on scarce existing research, whereby only isolated vertebrae have been analyzed contemporaneously. Due to huge methodological differences in data capturing approaches, the results are additionally hardly comparable to each other and involved measurement procedures are often not implementable in clinical routines. Furthermore, none of the above-mentioned methods provided reference data for spinal motion during gait based on an appropriate number of healthy participants. Hence, the aim of this study was to present such reference data for spinal rotary motion of every vertebral body from C7 down to L4 and the pelvis derived from surface topographic back shape analyses in a cohort of 201 healthy participants walking on a treadmill at a given walking speed of 5 km/h. Additionally, the spine‘s functional movement behavior during gait should be described in the transverse plane based on data derived from this noninvasive, clinically suitable measurement approach and, in conclusion, the results shall be compared against those of previous research findings derived from other measurement techniques. Contrary to the previous functional understanding, the area of the mid-thoracic spine was found to demonstrate the largest amplitude of rotary motion of all investigated vertebrae and revealed an approximately counterrotated movement behavior compared to the rotary motion of the pelvis. In both directions, spinal rotation during gait seemed to be initiated by the pelvis. The overlying vertebrae followed in succession in the sense of an ongoing movement. Therefore, the point of intersection was not statically located in a specific anatomical section of the spine. Instead, it was found to be dynamic, ascending from one vertebra to the next from caudal to cranial in dependence of the pelvis’s rotation initiation.  相似文献   

11.
Movement speed during trunk flexion has long been reported to affect task performance and biomechanical responses. The current study investigated how movement speed changed lumbopelvic coordination, especially lumbopelvic continuous relative phase and phase variability during trunk flexion. Eighteen subjects executed a paced trunk flexion routine over time periods of 3, 7, 11 and 15 seconds. The results demonstrated that compared with the 3-s condition, lumbopelvic continuous relative phase was 98.8% greater in the 15-s condition, indicating a more anti-phase coordination pattern. This pattern is suggested to mitigate the increased spinal loading associated with the longer duration of muscle exertion. Additionally, phase variability was 18.8% greater in the 15-s trials than the 3-s trials, such an unstable coordination pattern is likely caused by the more active neuromuscular control. Findings of this study provide important information about the effects of movement speed on lumbopelvic coordination during trunk flexion.  相似文献   

12.
Previous research into running has demonstrated consistent patterns in pelvic, lumbar and thoracic motions between different human runners. However, to date, there has been limited attempt to explain why observed coordination patterns emerge and how they may relate to centre of mass (CoM) motion. In this study, kinematic data were collected from the thorax, lumbar spine, pelvis and lower limbs during over ground running in n = 28 participants. These data was subsequently used to develop a theoretical understanding of the coordination of the spine and pelvis in all three body planes during the stance phase of running. In the sagittal plane, there appeared to be an antiphase coordinate pattern which may function to increase femoral inclination at toe off whilst minimising anterior–posterior accelerations of the CoM. In the medio-lateral direction, CoM motion appears to facilitate transition to the contralateral foot. However, an antiphase coordination pattern was also observed, most likely to minimise unnecessary accelerations of the CoM. In the transverse plane, motion of the pelvis was observed to lag slightly behind that of the thorax. However, it is possible that the close coupling between these two segments facilitates the thoracic rotation required to passively drive arm motion. This is the first study to provide a full biomechanical rationale for the coordination of the spine and pelvis during human running. This insight should help clinicians develop an improved understanding of how spinal and pelvic motions may contribute to, or result from, common running injuries.  相似文献   

13.
This article contrasts the mechanical energy profiles of asymmetrical galloping with those of symmetrical running in adult humans. Seven female subjects were filmed while performing overground running and galloping at their preferred velocities. A previous study (Whitall & Caldwell, 1992) showed that kinematic differences between these gait modes included higher preferred velocity for running than galloping, with distinct differences in interlimb coordination but surprisingly similar intralimb patterns. Energetically, in the present study the whole body center of mass during galloping was found to behave much as it does in walking; kinetic and potential energy profiles were out of phase, as compared with running, which exhibited in-phase fluctuations of kinetic and potential energies. The primary reason for these center of mass differences was found in the energetics of the back leg of galloping, which demonstrated alterations in timing of its energy fluctuations and less energy generation than the front leg. Analysis of the power sources underlying the segmental energies during swing phase showed that the back leg's energy changes were accomplished mainly through reduced use of the hip muscles and less interlimb energy transfer. The back leg's energetics during swing also displayed a shift toward greater reliance on nonmuscular energy sources. A pattern of energy inflow during early swing and energy outflow during late swing was common to both running and galloping, although the galloping legs both demonstrated more abrupt transitions between these phases. The possibility is raised that the 67/33 interlimb phasing ratio used in galloping is selected to reduce mechanical energy variations of the total body center of mass. These data suggest that models of asymmetric gait in humans must account for more than merely phase alteration.  相似文献   

14.
Walking is one of the fundamental forms of human gross motor activity in which spatiotemporal movement coordination can occur. While considerable body of evidence already exists on pedestrian movement coordination while walking in pairs, little is known about gait control while walking in more complex topological arrangements. To this end, this study provides some of the first evidence of spontaneous gait synchronisation while walking in a group. Nine subjects covered the total distance of 40 km at different speeds while assembled in a three-by-three formation. Two experimental protocols were applied in which the subjects were either not specifically asked to or specifically asked to synchronise their gait. To obtain results representative from the point of view of gait control, the movement coordination was quantified using the indirectly measured vertical component of ground reaction force, based on output from a network of wireless motion monitors. Bivariate phase difference analysis was conducted using wavelet transform, synchronisation strength measures derived from Shannon entropy, and circular statistics. A fundamental relationship describing the influence of the group walking speed on individuals’ pacing frequency was established, showing a positive correlation different from that previously reported for walking in solitude. A positive correlation was found between the average synchronisation strength within a group and group’s walking speed. The most persistent coordination patterns were identified for pedestrians walking front-to-back and side-by-side. Overall, the spontaneous gait synchronisation while walking in a group is relatively weak, well below the levels reported for walking in pairs.  相似文献   

15.
Our purpose was to investigate the spatial and temporal profile of the paraspinal muscle activation during gait in a group of 13 patients with lumbar instability (LI) in a pre-surgical setting compared to the results with those from both 13 healthy controls (HC) and a sample of 7 patients with failed back surgery syndrome (FBSS), which represents a chronic untreatable condition, in which the spine muscles function is expected to be widely impaired.Spatiotemporal gait parameters, trunk kinematics, and muscle activation were measured through a motion analysis system integrated with a surface EMG device. The bilateral paraspinal muscles (longissimus) at L3-L4, L4-L5, and L5-S1 levels and lumbar iliocostalis muscles were evaluated.Statistical analysis revealed significant differences between groups in the step length, step width, and trunk bending and rotation. As regard the EMG analysis, significant differences were found in the cross-correlation, full-width percentage and center of activation values between groups, for all muscles investigated.Patients with LI, showed preserved trunk movements compared to HC but a series of EMG abnormalities of the spinal muscles, in terms of left-right symmetry, top-down synchronization, and spatiotemporal activation and modulation compared to the HC group. In patients with LI some of such EMG abnormalities regarded mainly the segment involved by the instability and were strictly correlated to the pain perception. Conversely, in patients with FBSS the EMG abnormalities regarded all the spinal muscles, irrespective to the segment involved, and were correlated to the disease’s severity. Furthermore, patients with FBSS showed reduced lateral bending and rotation of the trunk and a reduced gait performance and balance.Our methodological approach to analyze the functional status of patients with LI due to spine disease with surgical indications, even in more complex conditions such as deformities, could allow to evaluate the biomechanics of the spine in the preoperative conditions and, in the future, to verify whether and which surgical procedure may either preserve or improve the spine muscle function during gait.  相似文献   

16.
The aim of this research was to quantify the coordination pattern between thorax and pelvis during a golf swing. The coordination patterns were calculated using vector coding technique, which had been applied to quantify the coordination changes in coupling angle (γ) between two different segments. For this, fifteen professional and fifteen amateur golfers who had no significant history of musculoskeletal injuries. There was no significant difference in coordination patterns between the two groups for rotation motion during backswing (p = 0.333). On the other hand, during the downswing phase, there were significant differences between professional and amateur groups in all motions (flexion/extension: professional [γ] = 187.8°, amateur [γ] = 167.4°; side bending: professional [γ] = 288.4°, amateur [γ] = 245.7°; rotation: professional [γ] = 232.0°, amateur [γ] = 229.5°). These results are expected to be a discriminating measure to assess complex coordination of golfers' trunk movements and preliminary study for interesting comparison by golf skilled levels.  相似文献   

17.
ObjectivesTo investigate the magnitude of the home advantage in the National Hockey League (NHL) as games proceeded from regulation, to overtime, to the shootout, while adjusting for team quality.DesignArchival.MethodBinary logistic regression analyses were conducted using data from the 2005–2006 through 2013–2014 NHL seasons (N = 10,534 games) to compare home teams’ odds of winning in regulation, overtime, and the shootout.ResultsCompared to games decided in regulation, higher quality home teams' odds of winning were slightly lower when games concluded in either overtime or the shootout. Further, regardless of team quality, home teams’ odds of winning were moderately lower when games concluded in the shootout rather than overtime.ConclusionsThe shootout may affect home team players' psychological and behavioural states, generally resulting in a decrease in home teams’ odds of winning in the shootout relative to overtime.  相似文献   

18.
Backward slope walking was considered as a practical rehabilitation and training skill. However, its gait stability has been hardly studied, resulting in its limited application as a rehabilitation tool. In this study, the effect of walking direction and slope grade were investigated on the local dynamic stability of the motion of lower extremity joints and trunk segment during backward and forward upslope walking (BUW/FUW). The local divergence exponents (λS) of 16 adults were calculated during their BUW and FUW at grades of 0%, 5%, 10%, and 15%. Mean standard deviation over strides (MeanSD) was analyzed as their gait variability. Backward walking showed larger λS for the abduction-adduction and rotational angles of knee and ankle on inclined surface than forward walking, while λS for hip flexion-extension angle at steeper grades was opposite. No grade effect for any joint existed during BUW, while λS increased with the increasing grade during FUW. As to the trunk, walking direction did little impact on λS. Still, significant larger λS for its medial-lateral and vertical motion were found at the steeper grades during both FUW and BUW. Results indicate that during BUW, the backward direction may influence the stability of joint motions, while the trunk stability was challenged by the increasing grades. Therefore, BUW may be a training tool for the stability of both upper and lower body motion during gait.  相似文献   

19.
To evaluate the contrasting dynamical and biomechanical interpretations of the 2:1 frequency coordination between arm and leg movements that occurs at low walking velocities and the 1:1 frequency coordination that occurs at higher walking velocities, the authors conducted an experiment in which they quantified the effect of walking velocity on the stability of the frequency and phase coordination between the individual limb movements. Spectral analyses revealed the presence of 2:1 frequency coordination as a consistent feature of the data in only 3 out of 8 participants at walking velocities ranging from 1.0 to 2.0 km/h, in spite of the fact that the eigenfrequencies of the arms were rather similar across participants. The degree of interlimb coupling, as indexed by weighted coherence and variability of relative phase, was lower for the arm movements and for ipsilateral and diagonal combinations of arm and leg movements than for the leg movements. Furthermore, the coupling between all pairs of limb movements was found to increase with walking velocity, whereas no clear signs were observed that the switches from 2:1 to 1:1 frequency coordination and vice versa were preceded by loss of stability. Therefore, neither a purely biomechanical nor a purely dynamical model is optimally suited to explain these results. Instead, an integrative model involving elements of both approaches seems to be required.  相似文献   

20.
During gait acquisition, children learn to use their changing resources to meet the requirements of the task. Compared to typically developing toddlers (TD), toddlers with Down syndrome (DS) have functionally different musculoskeletal characteristics, such as hypotonia, and joint and ligament laxity, that could produce a reduced passive stiffness. The interplay between this inherently lower passive stiffness and the demands of walking may result in different strategies during gait acquisition. This study compared normalized global stiffness and lower limb's co-contraction indices (CCI) used by toddlers with TD (n=12) and with DS (n=12), during the early stages of gait acquisition. Stiffness and CCI were normalized by gravitational torque (mLg) in both phases of gait (stance, swing). Five longitudinal evaluations were conducted from the onset of locomotion until three months post-acquisition. All children were video taped and had electromyographic (EMG) recordings from muscle pairs of one leg, which were used to calculate CCI of hip, knee, ankle, and total leg CCI. Body and lower limb stiffness were calculated according to a hybrid pendulum resonance equation. Results from ANOVAs revealed no group differences on stiffness or on CCI's during stance but children with DS showed greater CCI during swing. Despite the structural musculoskeletal differences between toddlers with TD and with DS, the similarities observed in their processes of gait development suggest functional equivalences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号