首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Recent research reveals a link between individual differences in mathematics achievement and performance on tasks that activate the approximate number system (ANS): a primitive cognitive system shared by diverse animal species and by humans of all ages. Here we used a brief experimental paradigm to test one causal hypothesis suggested by this relationship: activation of the ANS may enhance children’s performance of symbolic arithmetic. Over 2 experiments, children who briefly practiced tasks that engaged primitive approximate numerical quantities performed better on subsequent exact, symbolic arithmetic problems than did children given other tasks involving comparison and manipulation of non-numerical magnitudes (brightness and length). The practice effect appeared specific to mathematics, as no differences between groups were observed on a comparable sentence completion task. These results move beyond correlational research and provide evidence that the exercise of non-symbolic numerical processes can enhance children’s performance of symbolic mathematics.  相似文献   

2.
Recent theories in numerical cognition propose the existence of an approximate number system (ANS) that supports the representation and processing of quantity information without symbols. It has been claimed that this system is present in infants, children, and adults, that it supports learning of symbolic mathematics, and that correctly harnessing the system during tuition will lead to educational benefits. Various experimental tasks have been used to investigate individuals' ANSs, and it has been assumed that these tasks measure the same system. We tested the relationship across six measures of the ANS. Surprisingly, despite typical performance on each task, adult participants' performances across the tasks were not correlated, and estimates of the acuity of individuals' ANSs from different tasks were unrelated. These results highlight methodological issues with tasks typically used to measure the ANS and call into question claims that individuals use a single system to complete all these tasks.  相似文献   

3.
The approximate number system (ANS) theory suggests that all magnitudes, discrete (i.e., number of items) or continuous (i.e., size, density, etc.), are processed by a shared system and comply with Weber's law. The current study reexamined this notion by comparing performance in discrete (comparing numerosities of dot arrays) and continuous (comparisons of area of squares) tasks. We found that: (a) threshold of discrimination was higher for continuous than for discrete comparisons; (b) while performance in the discrete task complied with Weber's law, performance in the continuous task violated it; and (c) performance in the discrete task was influenced by continuous properties (e.g., dot density, dot cumulative area) of the dot array that were not predictive of numerosities or task relevant. Therefore, we propose that the magnitude processing system (MPS) is actually divided into separate (yet interactive) systems for discrete and continuous magnitude processing. Further subdivisions are discussed. We argue that cooperation between these systems results in a holistic comparison of magnitudes, one that takes into account continuous properties in addition to numerosities. Considering the MPS as two systems opens the door to new and important questions that shed light on both normal and impaired development of the numerical system.  相似文献   

4.
This paper addresses the relationship between basic numerical processes and higher level numerical abilities in normal achieving adults. In the first experiment we inferred the elementary numerical abilities of university students from the time they needed to encode numerical information involved in complex additions and subtractions. We interpreted the shorter encoding times in good arithmetic problem solvers as revealing clearer or more accessible representations of numbers. The second experiment shows that these results cannot be due to the fact that lower skilled individuals experience more maths anxiety or put more cognitive efforts into calculations than do higher skilled individuals. Moreover, the third experiment involving non-numerical information supports the hypothesis that these interindividual differences are specific to number processing. The possible causal relationships between basic and higher level numerical abilities are discussed.  相似文献   

5.
There are three main hypotheses about mental representations of arithmetic facts: the independent representation hypothesis, the operand-order-free single-representation hypothesis, and the operand-order-specific single-representation hypothesis. The current study used electrical recordings of eye movements to examine the organization of arithmetic facts in long-term memory. Subjects were presented single-digit addition and multiplication problems and were asked to report the solutions. Analyses of the horizontal electrooculograph (HEOG) showed an operand order effect for multiplication in the time windows 150–300 ms (larger negative potentials for smaller operand first problems than for larger operand first ones). The operand order effect was reversed in the time windows from 400 to 1,000 ms (i.e., larger operand first problems had larger negative potentials than smaller operand first problems). For addition, larger operand first problems had larger negative potentials than smaller operand first in the series of time windows from 300 to 1,000 ms, but the effect was smaller than that for multiplication. These results confirmed the dissociated representation of addition and multiplication facts and were consistent with the prediction of the preferred operand-order-specific representation hypothesis.  相似文献   

6.
Recent evidence has highlighted the important role that number-ordering skills play in arithmetic abilities, both in children and adults. In the current study, we demonstrated that number comparison and ordering skills were both significantly related to arithmetic performance in adults, and the effect size was greater in the case of ordering skills. Additionally, we found that the effect of number comparison skills on arithmetic performance was mediated by number-ordering skills. Moreover, performance on comparison and ordering tasks involving the months of the year was also strongly correlated with arithmetic skills, and participants displayed similar (canonical or reverse) distance effects on the comparison and ordering tasks involving months as when the tasks included numbers. This suggests that the processes responsible for the link between comparison and ordering skills and arithmetic performance are not specific to the domain of numbers. Finally, a factor analysis indicated that performance on comparison and ordering tasks loaded on a factor that included performance on a number line task and self-reported spatial thinking styles. These results substantially extend previous research on the role of order processing abilities in mental arithmetic.  相似文献   

7.
Although the psychophysics of infants’ nonsymbolic number representations have been well studied, less is known about other characteristics of the approximate number system (ANS) in young children. Here three experiments explored the extent to which the ANS yields abstract representations by testing infants’ ability to transfer approximate number representations across sensory modalities. These experiments showed that 6-month-olds matched the approximate number of sounds they heard to the approximate number of sights they saw, looking longer at visual arrays that numerically mismatched a previously heard auditory sequence. This looking preference was observed when sights and sounds mismatched by 1:3 and 1:2 ratios but not by a 2:3 ratio. These findings suggest that infants can compare numerical information obtained in different modalities using representations stored in memory. Furthermore, the acuity of 6-month-olds’ comparisons of intermodal numerical sequences appears to parallel that of their comparisons of unimodal sequences.  相似文献   

8.
When participants accomplish cognitive tasks, they obtain poorer performance if asked to execute a poorer strategy than a better strategy on a given problem. These poorer-strategy effects are smaller following execution of a poorer strategy relative to following a better strategy. To investigate ERP correlates of sequential modulations of poorer-strategy effects, we asked participants (n = 20) to accomplish a computational estimation task (i.e., provide approximate products to two-digit multiplication problems like 38 × 74). For each problem, they were cued to execute a better versus a poorer strategy. We found event-related potentials signatures of sequential modulations of poorer-strategy effects in two crucial windows (i.e., between 200 and 550 ms and between 850 and 1250 ms) associated with executive control mechanisms and allowing conflict monitoring between the better and the cued strategy. These results have important implications on theories of strategies as they suggest that sequential modulations of poorer-strategy effects involve earlier as well as later mechanisms of cognitive control during strategy execution.  相似文献   

9.
Cognitive training has received a lot of attention recently, yielding findings that can be conflicting and controversial. In this paper, we present a novel approach to cognitive training based on complex motor activities. In a randomized controlled design, participants were assigned to one of three conditions: aerobic exercise, working memory training or designed sport — an intervention specifically tailored to include both physical and cognitive demands. After training for eight weeks, the designed sport group showed the largest gains in all cognitive measures, illustrating the efficacy of complex motor activities to enhance cognition. Designed sport training also revealed impressive health benefits, namely decreased heart rate and blood pressure. In this period of skepticism over the efficacy of computerized cognitive training, we discuss the potential of ecological interventions targeting both cognition and physical fitness, and propose some possible applications.  相似文献   

10.
Past research suggested that negative numbers could be represented in terms of their components in the visual modality. The present study examined the processing of negative numbers in the auditory modality and whether it is affected by context. Experiment 1 employed a stimuli detection task where only negative numbers were presented binaurally. Experiment 2 employed the same task, but both positive and negative numbers were mixed as cues. A reverse attentional spatial–numerical association of response codes (SNARC) effect for negative numbers was obtained in these two experiments. Experiment 3 employed a number classification task where only negative numbers were presented binaurally. Experiment 4 employed the same task, but both positive and negative numbers were mixed. A reverse SNARC effect for negative numbers was obtained in these two experiments. These findings suggest that negative numbers in the auditory modality are generated from the set of positive numbers, thus supporting a components representation.  相似文献   

11.
Mangarevan traditionally contained two numeration systems: a general one, which was highly regular, decimal, and extraordinarily extensive; and a specific one, which was restricted to specific objects, based on diverging counting units, and interspersed with binary steps. While most of these characteristics are shared by numeration systems in related languages in Oceania, the binary steps are unique. To account for these characteristics, this article draws on—and tries to integrate—insights from anthropology, archeology, linguistics, psychology, and cognitive science more generally. The analysis of mental arithmetic with these systems reveals that both types of systems entailed cognitive advantages and served important functions in the cultural context of their application. How these findings speak to more general questions revolving around the theoretical models and evolutionary trajectory of numerical cognition will be discussed in the 6 .  相似文献   

12.
近似数量加工是对大数目物体数量在不依赖逐个数数前提下的估计。行为学研究提示高数学焦虑人群近似数量加工能力下降, 但神经机制未明。本研究探讨高数学焦虑个体近似数量加工的神经机制, 比较高低数学焦虑脑电活动的差异:(1)行为上无显著组间差异; (2)高数学焦虑组的P2p成分波幅增加; (3) δ频段ERS及β频段ERD无显著数量比例效应, 而低数学焦虑组在上述指标的数量比例效应显著。本研究为高数学焦虑人群近似数量加工能力下降提供了电生理学的证据。  相似文献   

13.
The goal of the present study was to compare a range of aspects in children’s symbolic knowledge about the number three among two groups of three-year-olds from contrasting socioeconomic backgrounds. Every child was presented with five tasks that focused on the number three and that had cognitive demands of different complexity: expressing their age, reciting the conventional number series up to three, quantifying a collection of three, and two tasks requiring the use of visually presented quantitative information.The results showed the same order of difficulty of the tasks in both socioeconomic groups and a clear performance difference depending on socioeconomic background. These findings show that symbolic knowledge about the number three does not come in an all or none fashion. Rather, different aspects of this symbolic competence become apparent in response to different tasks, and seem to depend largely on the socioeconomic environment in which children develop.  相似文献   

14.
Abstract

Two hundred forty high school students (120 male and 120 female) in India performed a moderately difficult multiple choice Arithmetic Reasoning task after undergoing short-term (40 minutes) cognitive treatment in the form of Attentional Skills Training. A 2 × 2 × 2 (Test Anxiety x Attentional Skills Training x Stress) design with separate analysis for boys and girls indicated these results: with intervention the high anxiety subjects under ego stress conditions, compared to their high-anxious control, low-anxious ego stress, or low-anxious control counterparts, reported the maximum significant improvement in performance on the Arithmetic Reasoning test. The low-anxiety subjects performed consistently well with or without treatment or stress conditions. The findings shed new light on the attentional theory of test anxiety, and it was reasoned that long-term effects of cognitive treatment be studied by using varied performance tasks (difficulty level controlled) on different gender and age groups across cultures.  相似文献   

15.
16.
People tend to underestimate subtraction and overestimate addition outcomes and to associate subtraction with the left side and addition with the right side. These two phenomena are collectively labeled 'operational momentum' (OM) and thought to have their origins in the same mechanism of 'moving attention along the mental number line'. OM in arithmetic has never been tested in children at the preschool age, which is critical for numerical development. In this study, 3–5 years old were tested with non‐symbolic addition and subtraction tasks. Their level of understanding of counting principles (CP) was assessed using the give‐a‐number task. When the second operand's cardinality was 5 or 6 (Experiment 1), the child's reaction time was shorter in addition/subtraction tasks after cuing attention appropriately to the right/left. Adding/subtracting one element (Experiment 2) revealed a more complex developmental pattern. Before acquiring CP, the children showed generalized overestimation bias. Underestimation in addition and overestimation in subtraction emerged only after mastering CP. No clear spatial‐directional OM pattern was found, however, the response time to rightward/leftward cues in addition/subtraction again depended on stage of mastering CP. Although the results support the hypothesis about engagement of spatial attention in early numerical processing, they point to at least partial independence of the spatial‐directional and magnitude OM. This undermines the canonical version of the number line‐based hypothesis. Mapping numerical magnitudes to space may be a complex process that undergoes reorganization during the period of acquisition of symbolic representations of numbers. Some hypotheses concerning the role of spatial‐numerical associations in numerical development are proposed.  相似文献   

17.
Statistical learning (SL), sensitivity to probabilistic regularities in sensory input, has been widely implicated in cognitive and perceptual development. Little is known, however, about the underlying mechanisms of SL and whether they undergo developmental change. One way to approach these questions is to compare SL across perceptual modalities. While a decade of research has compared auditory and visual SL in adults, we present the first direct comparison of visual and auditory SL in infants (8–10 months). Learning was evidenced in both perceptual modalities but with opposite directions of preference: Infants in the auditory condition displayed a novelty preference, while infants in the visual condition showed a familiarity preference. Interpreting these results within the Hunter and Ames model (1988), where familiarity preferences reflect a weaker stage of encoding than novelty preferences, we conclude that there is weaker learning in the visual modality than the auditory modality for this age. In addition, we found evidence of different developmental trajectories across modalities: Auditory SL increased while visual SL did not change for this age range. The results suggest that SL is not an abstract, amodal ability; for the types of stimuli and statistics tested, we find that auditory SL precedes the development of visual SL and is consistent with recent work comparing SL across modalities in older children.  相似文献   

18.
19.
选取112名二年级小学生,以点阵比较任务测量近似数量系统敏锐度,同时以工作记忆测验成绩为协变量,探究了不同心算形式(视算、读算)对不同近似数量系统敏锐度儿童心算表现的潜在影响。结果显示:(1)心算形式显著影响心算的正确率,读算形式下儿童的心算表现最好;(2)控制工作记忆影响后,心算形式与近似数量系统敏锐分组均对心算正确率影响显著。总体来讲,读算可能是提高小学儿童简单心算表现的有效形式,并能提高低近似数量系统敏锐度儿童的心算表现。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号