首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Different clinical subtypes of Parkinson’s disease (PD) have long been recognized. Recent studies have focused on two PD subtypes: Postural Instability and Gait Difficulty (PIGD) and Tremor Dominant (TD). PIGD patients have greater difficulties in postural control in relation to TD. However, knowledge about the differences in reactive adjustment mechanisms following a perturbation in TD and PIGD is limited. This study aimed to compare reactive postural adjustments under unexpected external perturbation in TD, PIGD, and control group (CG) subjects. Forty-five individuals (15 TD, 15 PIGD, and 15 CG) participated in this study. Postural perturbation was applied by the posterior displacement of the support surface in an unexpected condition. The velocity (15 cm/s) and displacement (5 cm/s) of perturbation were the same for all participants. Center of pressure (CoP) and center of mass (CoM) were analyzed for two reactive windows after the perturbation (0–200 ms and 200–700 ms). The Bonferroni post hoc test indicated a higher range of CoP in the PIGD when compared to the CG (p = 0.021). The PIGD demonstrated greater time to recover the stable posture compared to the TD (p = 0.017) and CG (p = 0.003). Furthermore, the TD showed higher AP-acceleration peak of CoM when compared to the PIGD (p = 0.048) and CG (p = 0.013), and greater AP-acceleration range of CoM in relation to the CG (p = 0.022). These findings suggest that PD patients present worse reactive postural control after perturbation compared to healthy older individuals. CoP and CoM parameters are sensitive to understand and detect the differences in reactive postural mechanisms in PD subtypes.  相似文献   

2.
The present study examined the association between plantar flexion torque variability during isolated isometric contractions and during quiet bipedal standing. For plantar flexion torque measurements in quiet stance (QS), subjects stood still over a force plate. The mean plantar flexion torque level exerted by each subject in QS (divided by 2 to give the torque due to a single leg) served as the target torque level for right leg force-matching tasks in extended knee (KE) and flexed knee (KF) conditions. Muscle activation levels (EMG amplitudes) of the triceps surae and mean, standard deviation and coefficient of variation of plantar flexion torque were computed from signals acquired during periods with and without visual feedback. No significant correlations were found between EMG amplitudes and torque variability, regardless of the condition and muscle being analyzed. A significant correlation was found between torque variability in QS and KE, whereas no significant correlation was found between torque variability in QS and KF, regardless of vision availability. Therefore, torque variability measured in a controlled extended knee plantar flexion contraction is a predictor of torque variability in the anterior-posterior direction when the subjects are in quiet standing. In other words, larger plantar flexion torque variability in KE (but not in KF) implies less stable balance. The mechanisms underlying the findings above are probably associated with the similar proprioceptive feedback from the triceps surae in QS and KE and poorer proprioceptive feedback from the triceps surae in KF due to the slackening of the gastrocnemii. An additional putative mechanism includes the different torque contributions of each component of the triceps surae in the two knee angles. From a clinical and research standpoint, it would be advantageous to be able to estimate changes in balance ability by means of simple measurements of torque variability in a force matching task.  相似文献   

3.
The authors evaluated the effect of 3 months of resistance and aerobic training (3 sessions/week) on body balance in a group of 25 overweight and obese individuals. Prior to and after the training, they performed static and task-oriented balance tests under various conditions. Mean center of pressure (CoP) velocity and mean trace length of the CoP in the y-axis registered during a one-legged stance significantly decreased after the resistance training (19.1%, p = .024; 29.3%, p = .009). Mean trace length of the CoP in the y-axis decreased significantly also during a bipedal stance on a foam surface with eyes open and closed (10.9%, p = .040; 18.2%, p = .027). In addition, mean CoP distance and mean squared CoP distance in the anteroposterior direction during a visually guided center of mass (CoM) tracking task significantly improved (14.7%, p = .033; 28.2%, p = .016). However, only mean trace length of the CoP in the y-axis during a bipedal stance on a foam surface with eyes open and closed significantly decreased after the aerobic training (10.3%, p = .047; 16.5%, p = .029). It may be concluded that resistance training is more efficient for the improvement of the anteroposterior unilateral stability and the accuracy of the regulation of the CoM anteroposterior position than aerobic training in overweight and obese individuals.  相似文献   

4.
We investigated the adaptation of balancing behavior during a continuous, predictable perturbation of stance consisting of 3-min backward and forward horizontal sinusoidal oscillations of the support base. Two visual conditions (eyes-open, EO; eyes-closed, EC) and two oscillation frequencies (LF, 0.2 Hz; HF, 0.6 Hz) were used. Center of Mass (CoM) and Center of Pressure (CoP) oscillations and EMG of Soleus (Sol) and Tibialis Anterior (TA) were recorded. The time course of each variable was estimated through an exponential model. An adaptation index allowed comparison of the degree of adaptation of different variables. Muscle activity pattern was initially prominent under the more challenging conditions (HF, EC and EO; LF, EC) and diminished progressively to reach a steady state. At HF, the behavior of CoM and CoP was almost invariant. The time-constant of EMG adaptation was shorter for TA than for Sol. With EC, the adaptation index showed a larger decay in the TA than Sol activity at the end of the balancing trial, pointing to a different role of the two muscles in the adaptation process. At LF, CoM and CoP oscillations increased during the balancing trial to match the platform translations. This occurred regardless of the different EMG patterns under EO and EC. Contrary to CoM and CoP, the adaptation of the muscle activities had a similar time-course at both HF and LF, in spite of the two frequencies implying a different number of oscillation cycles. During adaptation, under critical balancing conditions (HF), postural muscle activity is tuned to that sufficient for keeping CoM within narrow limits. On the contrary, at LF, when vision permits, a similar decreasing pattern of muscle activity parallels a progressive increase in CoM oscillation amplitude, and the adaptive balancing behavior shifts from the initially reactive behavior to one of passive riding the platform. Adaptive balance control would rely on on-line computation of risk of falling and sensory inflow, while minimizing balance challenge and muscle effort. The results from this study contribute to the understanding of plasticity of the balance control mechanisms under posture-challenging conditions.  相似文献   

5.
Achilles tendinopathy is the most frequent foot overuse injury in ballet dancers and knowledge of clinically modifiable factors related to tendon structure in a population at risk, such as ballet dancers, would be important for the development of preventive programs. Therefore, the present study aimed to assess relationships of gastrocnemius muscle architecture and ankle plantar flexors function with Achilles tendon morphology in ballet dancers. Fifty-four measures from 27 ballet dancers were collected. Tendon morphology (thickness, echogenicity, hypoechoic areas and neovascularisation) and muscle architecture (thickness, pennation angle and fascicle length) were evaluated using ultrasonography; ankle plantar flexors torque was evaluated using hand-held dynamometry, flexibility was evaluated in maximal weight-bearing ankle dorsiflexion position using inclinometer, and endurance was evaluated using the heel rise test. Ankle plantar flexors torque and medial gastrocnemius muscle architecture (thickness, pennation angle and fascicle length) are associated with Achilles tendon thickness in ballet dancers (r2 = 0.24, p = 0.008). Ankle plantar flexors torque and medial gastrocnemius muscle fascicle length are also associated with the echogenicity of the Achilles tendon (r2 = 0.13, p = 0.03). These findings call attention to the potential importance of ankle plantar flexors muscle force in healthy ballet dancers for the prevention of alterations in Achilles tendon structure.  相似文献   

6.
Thirty children with cerebral palsy (CP) and 22 typical developing (TD) were tested with 3D-gait analysis. At turning, trunk rotation was larger in CP2 (GMFCS II) than in TD and CP1 (GMFCS I), and head flexion was larger in CP3 (GMFCS III) than TD. Maximum head and trunk flexion values during the entire trial were larger in CP3 than in the other groups, and trunk flexion was larger in CP2 than in TD. Trial time increased with GMFCS-level. Less trunk rotation than TD and CP1 reflects spatial insecurity in CP2, which in CP3 is compensated by the walker. The flexed head and trunk in CP3 and trunk in CP2 may reflect deficits in proprioception and sensation requiring visual control of the lower limbs.  相似文献   

7.
An experiment was conducted to compare the effects of bilateral and unilateral stance on postural fluctuations and intralimb coordination during active balance control. Fifteen participants stood bilaterally and unilaterally while conducting a pointing task with an outstretched arm. Excursion of center of foot pressure (CoP) and limb movements were recorded with a force plate and eight dual-axis accelerometers, respectively. Compared to bilateral stance, unilateral stance resulted in wider CoP trajectories and greater postural fluctuations, especially in the lower limbs. The limb-dependent postural fluctuations during unilateral stance were associated with an increased coupling between the upper limb segments and a decreased coupling between the segments of the stance leg. Unilateral stance further resulted in greater regularity and spectral changes in postural fluctuations of the trunk and lower limb due to increased central oscillations (8-15 Hz). The observed structural differences in postural fluctuations between unilateral and bilateral stance strongly suggested that the postural control system modulates joint stiffness in a stance-dependent manner. Probably, in unilateral stance, attentive control was shifted to the stance leg at the expense of increasing arm stiffness to reduce movement redundancy.  相似文献   

8.
Reduced support-surface stability has been shown to attenuate the effect of Achilles tendon vibration on backward body displacement. In the present study, 20 participants performed a quiet, upright standing task on a stable and sway-referenced support, with and without vibration. The authors calculated equilibrium scores (ES), approximate entropy (ApEn), and mean and peak power spectral density frequencies of center-of-pressure variations. It was found that ES values decreased with the addition of vibration and in the sway-referenced support condition. ApEn values decreased with the addition of vibration but only with a stable support. Conversely, mean and peak frequencies increased with the addition of vibration, independent of support stability. These results suggest that the role of ankle proprioceptive input changes depending on support-surface characteristics and demonstrate the value of using both linear and nonlinear measures of postural sway.  相似文献   

9.
The authors examined postural asymmetries during quiet stance and while holding evenly or unevenly distributed loads. Right-hand dominant subjects preferentially loaded their right lower limb when holding no load or a load evenly distributed in both hands, but no differences in center of pressure (CoP) were observed between the left and right limbs. However, longer CoP displacement was observed under the preferentially loaded limb, which may reflect a functional asymmetry that allows quick movement of one limb in response to a potential perturbation. When a load was held only in the nondominant hand, sample entropy decreased in the left (loaded) limb but increased in the right (unloaded) limb, suggesting the unloaded foot compensated for a loss of control flexibility in the loaded foot.  相似文献   

10.
The present study attempted to investigate the effect of position on the perception of angle of trunk flexion while standing. For this purpose, the range effect was factored out by setting the constant target angle at 10 degrees, with varied starting positions of trunk flexion. We found that subjects underestimated angle of trunk flexion when the starting position was close to a quiet standing posture, overestimated when close to maximum trunk flexion, and correctly perceived it when at the middle position. Less perceptual distortion was observed at the positions close to maximum trunk flexion in the present study than in our previous one, in which various target angles of trunk flexion were reproduced from a quiet standing posture. The reduced distortion in the present study was believed to have resulted from factoring out the range effect. The flexion angle of the hip joint changed in tandem with that of the trunk, while very little movement was observed in the ankle, knee, and neck joints. Judging from the changing pattern of hip-joint angle, the muscle activity of the erector spinae and biceps femoris increased gradually to 90 degrees trunk flexion. In contrast, the actual increment of muscle activity reached zero or a minimum value at the middle angles as the angle of trunk flexion increased. It was assumed that the abrupt change in kinesthetic information associated with muscle activity exerted a great influence on the perception of trunk flexion.  相似文献   

11.
The influence of preparatory stance on rotation movement reaction time of the trunk by bending of the knee and hip joint(s) was examined in 12 subjects. Four preparatory stances were examined: straight knee and hip extension (STAND), slight flexion of knee joints and hip joint (LIGHT), deep flexion (DEEP), and free initial position, i.e. that felt to be the most comfortable and effective (FREE). There was no significant influence of the preparatory stance on hip latency, but there were significant differences between the preparatory stances on response time (RT) and movement time (MT). Furthermore, using a quadratic curve fitting technique, knee joint angles of 24.8 degrees and a hip joint angle of 23.3 degrees were shown to be the optimum flexion angles in the preparatory stance for the initiation of quick trunk rotation movements. It is proposed that mechanical factors have considerably more effects on trunk rotation movements than does the nervous system.  相似文献   

12.
Intuitively, a broad stance (i.e., standing with the feet farther apart than usual) should significantly improve postural stability. However, this intuition was not confirmed in quiet stance. Hence, a motion analysis system (markers attached to the trunk and head) and a force platform were used to investigate 13 healthy, young adults who performed 8 trials in standard and broad stances. In broad stance, the medialateral center of pressure (COP) sway mean power frequency was expected to be greater, whereas the variability (standard deviation) of COP, head, and trunk sway and the mean velocity of head and trunk sway was expected to be significantly lower. Accordingly, adoption of a broad stance significantly increased the medialateral mean power frequency of COP sway; decreased the standard deviation of medialateral COP, trunk, and head sway; and decreased the medialateral mean velocity of head sway. A broad stance was also associated with lower variability for head and COP sways in the anteroposterior axis. Unexpectedly, an effect of trial repetition was found for the variability of medialateral trunk sway. This was probably due to the break halfway through the study. In practical terms, broad stance conditions can improve postural control in the medialateral and anteroposterior axes.  相似文献   

13.
BackgroundHuman walking involves a rapid and powerful contraction of ankle plantar flexors during push-off in late stance.ObjectiveHere we investigated whether impaired push-off force contributes to gait problems in children with cerebral palsy (CP) and whether it may be improved by intensive gait training.MethodsSixteen children with CP (6–15 years) and fourteen typically developing (TD) children (4–15 years) were recruited. Foot pressure was measured by insoles and gait kinematics were recorded by 3-dimensional video analysis during treadmill and overground walking. The peak derivative of ground reaction force at push off (dPF) was calculated from the foot pressure measurements. Maximal voluntary plantar flexion (MVC) was measured while seated. Measurements were performed before and after a control period and after 4 weeks of 30 minutes daily inclined treadmill training.ResultsdPF and MVC were significantly lower in children with CP on the most affected (MA) as compared to TD children (p < .001). dPF was lower on the MA leg as compared to the less affected (LA) leg in children with CP (p < .05). Following gait training, increases in dPF (p < .001) and MVC (p < .01) were observed for the MA leg. Following gait training children with CP showed similar timing of dPF and similar stance phase duration on both legs indicating improved symmetry of gait. These effects were also shown during overground walking.ConclusionImpaired ability to voluntarily activate ankle plantar flexors and produce a rapid and powerful push-off during late stance are of importance for impaired gait function in children with CP. Intensive treadmill training may facilitate the drive to ankle plantar flexors and reduce gait asymmetry during both treadmill and overground walking.  相似文献   

14.
In this study, we examined the interaction between central and peripheral proprioceptive afferent pathways by applying ankle tendon vibration during postural leaning in different directions. Twenty young participants stood for 60s over the midline of two adjacent force platforms in (a) neutral stance distributing Body Weight (BW) equally between the platforms, (b) forward leaning transferring 80% of BW to the front platform and (c) backward leaning transferring 80% of BW to the rear platform. Participants controlled the degree of leaning by receiving on-line visual feedback of BW distribution matched to a target line. Vibration (80 Hz, 1.5–1.8 mm) was applied over the Achilles or tibialis anterior tendon during the middle 20s of standing. This induced a postural shift towards the vibration side and an increase in the variability of the BW distribution that was greater in backward compared to forward leaning. EMG responses to tendon vibration were independent of the leaning direction. Antagonistic activity also increased in response to vibration, the amplitude of this increase however was direction dependent. These results favor the hypothesis about the central co-modulation of the vibration evoked proprioceptive inflow based on postural and visual feedback rather than muscle tension constraints.  相似文献   

15.
The authors examined postural asymmetries during quiet stance and while holding evenly or unevenly distributed loads. Right-hand dominant subjects preferentially loaded their right lower limb when holding no load or a load evenly distributed in both hands, but no differences in center of pressure (CoP) were observed between the left and right limbs. However, longer CoP displacement was observed under the preferentially loaded limb, which may reflect a functional asymmetry that allows quick movement of one limb in response to a potential perturbation. When a load was held only in the nondominant hand, sample entropy decreased in the left (loaded) limb but increased in the right (unloaded) limb, suggesting the unloaded foot compensated for a loss of control flexibility in the loaded foot.  相似文献   

16.
The purpose of this study was to assess the effect of diminished plantar cutaneous sensation induced by cooling on postural control during double- and single-limb quiet standing. 32 healthy adults were tested on an intervention day and control day. The intervention consisted of 10 min. of ice immersion of the plantar aspect of the feet prior to balance testing. Dependent variables were center of pressure velocity and area during double- and single-limb stance with eyes open and closed. Significant interactions were found between sensation and vision for double-limb center of pressure area, with a significant reduction in area of center of pressure excursions after reducing sensation with eyes closed but not with eyes open. The area of center of pressure excursions may have been reduced in an effort to curtail exploratory postural behavior given the altered afferent input from plantar receptors. There were no significant differences for plantar hypoesthesia in single-limb stance.  相似文献   

17.
Next to position x and velocity v of the whole body center of mass (CoM) the 'extrapolated center of mass' (XcoM) can be introduced: xi = chi + nu/omega 0, where omega 0 is a constant related to stature. Based on the inverted pendulum model of balance, the XcoM enables to formulate the requirements for stable walking in a relatively simple form. In a very simple walking model, with the effects of foot roll-over neglected, the trajectory of the XcoM is a succession of straight lines, directed in the line from center of pressure (CoP) to the XcoM at the time of foot contact. The CoM follows the XcoM in a more sinusoidal trajectory. A simple rule is sufficient for stable walking: at foot placement the CoP should be placed at a certain distance behind and outward of the XcoM at the time of foot contact. In practice this means that a disturbance which results in a CoM velocity change Deltav can be compensated by a change in foot position (CoP) equal to Deltav/omega 0 in the same direction. Similar simple rules could be formulated for starting and stopping and for making a turn.  相似文献   

18.
ABSTRACT Breathing exerts destabilizing effects on postural stability during quiet stance. The authors conducted an experiment to evaluate the role of motor abundance in the organization of the postural synergy compensating for the effects of breathing. They measured the kinematic pattern of covariation among the major joints of the postural chain (ankle, knee, hip, trunk, and neck) as a function of different breathing modes (spontaneous, paced, and increased volume) and different stance instructions (still vs. relaxed) using the uncontrolled manifold approach. Joint variability was structured to preserve the stable position of the center of mass. This result supports the hypothesis that motor abundance of the postural chain plays an important role in the flexible compensation for breathing during quiet stance.  相似文献   

19.
We investigated the effect of joint immobilization on the postural sway during quiet standing. We hypothesized that the center of pressure (COP), rambling, and trembling trajectories would be affected by joint immobilization. Ten young adults stood on a force plate during 60 s without and with immobilized joints (only knees constrained, CK; knees and hips, CH; and knees, hips, and trunk, CT), with their eyes open (OE) or closed (CE). The root mean square deviation (RMS, the standard deviation from the mean) and mean speed of COP, rambling, and trembling trajectories in the anterior–posterior and medial–lateral directions were analyzed. Similar effects of vision were observed for both directions: larger amplitudes for all variables were observed in the CE condition. In the anterior–posterior direction, postural sway increased only when the knees, hips, and trunk were immobilized. For the medial–lateral direction, the RMS and the mean speed of the COP, rambling, and trembling displacements decreased after immobilization of knees and hips and knees, hips, and trunk. These findings indicate that the single inverted pendulum model is unable to completely explain the processes involved in the control of the quiet upright stance in the anterior–posterior and medial–lateral directions.  相似文献   

20.
Sudden addition or removal of visual information can be particularly critical to balance control. The promptness of adaptation of stance control mechanisms is quantified by the latency at which body oscillation and postural muscle activity vary after a shift in visual condition. In the present study, volunteers stood on a force platform with feet parallel or in tandem. Shifts in visual condition were produced by electronic spectacles. Ground reaction force (center of foot pressure, CoP) and EMG of leg postural muscles were acquired, and latency of CoP and EMG changes estimated by t-tests on the averaged traces. Time-to-reach steady-state was estimated by means of an exponential model. On allowing or occluding vision, decrements and increments in CoP position and oscillation occurred within about 2 s. These were preceded by changes in muscle activity, regardless of visual-shift direction, foot position or front or rear leg in tandem. These time intervals were longer than simple reaction-time responses. The time course of recovery to steady-state was about 3 s, shorter for oscillation than position. The capacity of modifying balance control at very short intervals both during quiet standing and under more critical balance conditions speaks in favor of a necessary coupling between vision, postural reference, and postural muscle activity, and of the swiftness of this sensory reweighing process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号