首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poom L 《Perception》2002,31(12):1439-1448
Traditionally, it is assumed that stereovision operates only on the positional difference (disparity) between luminance-defined features in the images in the left and the right eye. Here, I show that stereoscopic depth can be seen from disparity between edges created by relative motion of texture elements, and between edges created by correlated flicker of stationary texture elements. Luminance-based stereopsis was impossible since the texture was binocularly uncorrelated. Positional disparity of the centre of revolving patterns was not an efficient depth cue. Stereopsis from the stimuli presented here was possible even without binocular overlap of textured areas. The results provide evidence that positional disparity of kinetic edges, defined by correlated flicker or motion contrast alone, can be used as matching features to recover stereoscopic depth.  相似文献   

2.
The effects of visual movement on saccadic eye movement have been examined. In a classic apparent-movement demonstration with two successively exposed line-segment targets the quality of the movement is dependent on the relative orientation of the line segments. If saccadic eye movements are elicited between the targets in this situation, the configuration leading to optimal apparent movement also leads to the shortest-latency saccades. When a single line segment is succeeded by two line segments flanking it on opposite sides, and if one of these has the same orientation as the initial one and the other a different orientation, then apparent motion is seen between the two lines with the same orientation. However, the direction of saccades elicited in this configuration is not influenced by the relative orientations of the line segments. The two results together suggest that the effect of visual movement on saccadic eye movement is nonspecific.  相似文献   

3.
Strong misalignment effects are found in three-dimensional (3-D) versions of Poggendorff displays viewed binocularly. The components of the standard 2-D Poggendorff figure—the parallels and the oblique segments—were presented in 3-D depth as a flat rectangular object with occluding edges and an oblique line situated behind the object. Three experiments investigated the misalignment effects under three different observation instructions: Subjects were told to look at the oblique (Experiment 1), at the rectangle (Experiment 2), or at the background (Experiment 3). Experiments 1 and 2 examined the effects on judgments of alignment of varying the distance in depth that separates the oblique from the rectangle. Experiment 3 examined the effects of varying the distance between the fixated background and the 3-D Poggendorff figure. Both standard and reversed misalignment effects were obtained. When the viewing condition produces crossed disparity for the oblique, perceived misalignment occurs in the usual Poggendorff direction, but it is reversed with uncrossed disparity. Moreover, the amount of misalignment is related to the amount of disparity, and it can be much stronger than is usual in the 2-D versions of the Poggendorff. The misalignment effects can be explained by binocular integration to produce a single cyclopean image.  相似文献   

4.
This study is concerned with two questions regarding the illusory motion of objects that occurs concomitantly with motion of the head. One is whether this illusory concomitant motion, unlike the perception of real motion, is paradoxical in the sense that, although the object appears to move, it does not appear to go anywhere. The second question is whether illusory concomitant motion can be explained by errors in convergence produced by a tendency for the convergence of the eyes to displace in the direction of the resting state of convergence. Both questions receive a negative answer. In Experiment 1, it is shown that the illusory motion perceptually can add to or subtract from apparent motion resulting from real motion. In Experiment 2, it is shown that, for a binocularly viewed object at a near distance, the error in convergence (fixation disparity) is far too small to be an explanation for the illusory object motion associated with a moving head. The results of both experiments support an interpretation of illusory concomitant motion in terms of errors in the apparent distance of the stimulus object and the veridical perception of its direction.  相似文献   

5.
Lines of various orientations were viewed as prolonged afterimages in six experiments. The duration of unitary appearance was not influenced by line orientation for monocular afterimages, but there was a marginal effect for afterimages generated binocularly; vertical and horizontal lines tended to be visible for longer than did 45-deg lines. Measures of fragmentation frequency and the latency to the first disappearance did not vary reliably with orientation under any conditions. Binocular afterimages lasted longer than did monocular ones, but generally showed the same pattern of fragmentations. These results are compared with those from experiments using optical stabilization and steady fixation, in which orientation differences have been reported.  相似文献   

6.
The double-drift stimulus produces a strong shift in apparent motion direction that generates large errors of perceived position. In this study, we tested the effect of attentional load on the perceptual estimates of motion direction and position for double-drift stimuli. In each trial, four objects appeared, one in each quadrant of a large screen, and they moved upward or downward on an angled trajectory. The target object whose direction or position was to be judged was either cued with a small arrow prior to object motion (low attentional load condition) or cued after the objects stopped moving and disappeared (high attentional load condition). In Experiment 1, these objects appeared 10° from the central fixation, and participants reported the perceived direction of the target’s trajectory after the stimulus disappeared by adjusting the direction of an arrow at the center of the response screen. In Experiment 2, the four double-drift objects could appear between 6 ° and 14° from the central fixation, and participants reported the location of the target object after its disappearance by moving the position of a small circle on the response screen. The errors in direction and position judgments showed little effect of the attentional manipulation—similar errors were seen in both experiments whether or not the participant knew which double-drift object would be tested. This suggests that orienting endogenous attention (i.e., by only attending to one object in the precued trials) does not interact with the strength of the motion or position shifts for the double-drift stimulus.  相似文献   

7.
Selective adaptations was used to determine the degree of interactions between channels processing relative depth from stereopsis, motion parallax, and texture. Monocular adaptations with motion parallax or binocular stationary adaptation caused test surfaces, viewed either stationary binocularly or monocularly with motion parallax, to appear to slant in the opposite direction compared with the slant initially adapted to. Monocular adaptations on frontoparallel surfaces covered with a pattern of texture gradients caused a subsequently viewed test surface, viewed either monocularly with motion parallax or stationary binocularly, to appear to slant in the opposite direction as the slant indicated by the texture in the adaptation condition. No aftereffect emerged in the monocular stationary test condition. A mechanism of independent channels for relative depth perception is dismissed in favor of a view of an asymmetrical interactive processing of different information sources. The results suggest asymmetrical inhibitory interactions among habituating slant detector units receiving inputs from static disparity, dynamic disparity, and texture gradients.  相似文献   

8.
When an observer views a moving scene binocularly, both motion parallax and binocular disparity provide depth information. In Experiments lA-1C, we measured sensitivity to surface curvature when these depth cues were available either individually or simultaneously. When the depth cues yielded comparable sensitivity to surface curvature, we found that curvature detection was easier with the cues present simultaneously, rather than individually. For 2 of the 6 subjects, this effect was stronger when the component of frontal translation of the surface was vertical, rather than horizontal. No such anisotropy was found for the 4 other subjects. If a moving object is observed binocularly, the patterns of optic flow are different on the left and right retinae. We have suggested elsewhere (Cornilleau-Pérès & Droulez, in press) that this motion disparity might be used as avisual cue for the perception of a 3-D structure. Our model consisted in deriving binocular disparity from the left and right distributions of vertical velocities, rather than from luminous intensities, as has been done in classical studies on stereoscopic vision. The model led to some predictions concerning the detection of surface curvature from motion disparity in the presence or absence of intensity-based disparity (classically termedbinocular disparity). In a second set of experiments, we attempted to test these predictions, and we failed to validate our theoretical scheme from a physiological point of view.  相似文献   

9.
For the Poggendorff display (transversal interrupted by parallel lines), the typical distance-misperception theory postulates that a particular linear distance extending across the empty space between parallels is underestimated; examples are the intertransversal slant distance defined by the closest ends of the transversal segments (a “wings-in Müller-Lyer like” underestimation) or the perpendicular distance between parallels (parallels “attract”). Distance misperception by itself, however, can neither establish that perceived transversal misalignment exists for a Poggendorff display nor specify the perceivedlocation conditions) that will produce perceptual collinearity. The perceptual displacement vector is introduced as a means of specifying fully the perceptual mislocation (displacement) of one transversal segment with respect to the other. Given this vector information (direction as well as distance), the logical soundness of theories postulating distance or location misperception were evaluated, and they were compared on the basis of extant data. Such vector information can be used to evaluate other classes of theories as well.  相似文献   

10.
The hypothesis that induction of the McCollough effect (spatially selective color aftereffects) entails adaptation of monocularly driven detectors tuned to both spatial and color attributes of the visual stimulus was examined in four experiments. The McCollough effect could not be generated by displaying contour information to one eye and color information to the other eye during inspection, even in the absence of binocular rivalry. Nor was it possible to induce depth-specific color aftereffects following an inspection period during which random-dot stereograms were viewed, with crossed and uncrossed disparity seen in different colored light. Masking and aftereffect in the perception of stereoscopic depth were also nonselective to color; in both cases, perceptual distortion was controlled by stereospatial variables but not by the color relationship between the inspection and test stimuli. The results suggest that binocularly driven spatial detectors in human vision are insensitive to wavelength.  相似文献   

11.
C M Schor  P A Howarth 《Perception》1986,15(3):249-258
Thresholds for stereoscopic-depth perception increase with decreasing spatial frequency below 2.5 cycles deg-1. Despite this variation of stereo threshold, suprathreshold stereoscopic-depth perception is independent of spatial frequency down to 0.5 cycle deg-1. Below this frequency the perceived depth of crossed disparities is less than that stimulated by higher spatial frequencies which subtend the same disparities. We have investigated the effects of contrast fading upon this breakdown of stereo-depth invariance at low spatial frequencies. Suprathreshold stereopsis was investigated with spatially filtered vertical bars (difference of Gaussian luminance distribution, or DOG functions) tuned narrowly over a broad range of spatial frequencies (0.15-9.6 cycles deg-1). Disparity subtended by variable width DOGs whose physical contrast ranged from 10-100% was adjusted to match the perceived depth of a standard suprathreshold disparity (5 min visual angle) subtended by a thin black line. Greater amounts of crossed disparity were required to match broad than narrow DOGs to the apparent depth of the standard black line. The matched disparity was greater at low than at high contrast levels. When perceived contrast of all the DOGs was matched to standard contrasts ranging from 5-72%, disparity for depth matches became similar for narrow and broad DOGs. 200 ms pulsed presentations of DOGs with equal perceived contrast further reduced the disparity of low-contrast broad DOGs needed to match the standard depth. A perceived-depth bias in the uncrossed direction at low spatial frequencies was noted in these experiments. This was most pronounced for low-contrast low-spatial-frequency targets, which actually needed crossed disparities to make a depth match to an uncrossed standard. This bias was investigated further by making depth matches to a zero-disparity standard (ie the apparent fronto-parallel plane). Broad DOGs, which are composed of low spatial frequencies, were perceived behind the fixation plane when they actually subtended zero disparity. The magnitude of this low-frequency depth bias increased as contrast was reduced. The distal depth bias was also perceived monocularly, however, it was always greater when viewed binocularly. This investigation indicates that contrast fading of low-spatial-frequency stimuli changes their perceived depth and enhances a depth bias in the uncrossed direction. The depth bias has both a monocular and a binocular component.  相似文献   

12.
Ito H 《Perception》2003,32(3):367-375
The Pulfrich effect yields a perceived depth for horizontally moving objects but not for vertically moving ones. In this study the Pulfrich effect was measured by translating oblique lines seen through a circular window, which made motion direction ambiguous. Overlaying random dots that moved horizontally, vertically, or diagonally controlled the perceptual motion direction of the lines. In experiment 1, when the lines were seen to move horizontally, the effect was strongest in spite of the same physical motion of the lines. Experiment 2 was performed to test the above conditions again, excluding the Pulfrich effect of the dots on the depth of the lines. The overlaid dots were presented to one eye only. The result showed that the Pulfrich effect of the lines was persistently strong in spite of the perceptual changes in motion direction. Experiment 3 also showed that the Pulfrich depth was independent of the perceived horizontal speed in a plaid display. The Pulfrich effect was determined by measuring the horizontal disparity component, independently of the perceived motion direction. These results demonstrate that the aperture problems in motion and stereopsis in the Pulfrich effect are solved independently.  相似文献   

13.
Summary In this investigation on Wilde's phenomenon vertical lines were used instead of dots. In three experiments it was found that for the occurrence of Wilde's phenomenon, it is a necessary condition that the distances between all lines including the monocular end-lines are equal. When this is not the case the Panum effect is observed. When the distance between the end-line and its adjacent line deviates slightly from the distance between the central lines, one observes apparent rotation and a Panum effect. The observed depth of the end-line is in accordance with its disparity. The observed rotation is less than can be expected from the position in depth of the end-line. The disparity of the end-line is fully processed. Part of its disparity is used for apparent rotation of the pattern, and part of it is used for a displacement of the whole pattern.  相似文献   

14.
In three experiments, asymmetries between the processing of crossed and uncrossed disparities were investigated. The target was a luminance-defined circle concentric to a fixation mark, viewed stereoscopically on a computer monitor for 105 msec. Fifteen disparities were presented according to the method of constant stimuli. Observers indicated the apparent direction of target depth relative to fixation. All experiments measured both the accuracy and latency of this response. Experiment 1 showed fewer errors and shorter reaction times for identifying crossed disparities. Experiments 2 and 3 replicated Experiment 1 and also showed that observers may often perceive a target in the direction opposite that prescribed by the disparity information. We propose that the asymmetries and reversals result from differences in computation of sign, not of magnitude. This notion is consistent with a scheme of continuous disparity tuning and accounts for such asymmetries and errors without positing disparity pooling mechanisms.  相似文献   

15.
Data from two experiments indicate that the findings of Prytulak (1973) are generalizable to stimulus lines at all orientations: (a) when setting a response dot so that it appears to lie on an imaginary extension of a stimulus line, Ss misplace the dot on the side of the extension opposite the fixation point (a contralateral response, or CR) when the fixation point is in the vicinity of the stimulus line and on the same side of the extension as the fixation point (an ipsflateral response, or IR) when the fixation point is in the vicinity of the response dot; (b) CR is larger than IR; (c) fixation of the stimulus line or any point on its extension produces relatively accurate settings. New findings were: (a) the magnitude of CR decreased as the orientation of the stimulus line approached the vertical or horizontal; (b) the magnitude of CR on or near the horizontal was weaker than on or near the vertical; (c) the magnitude of IR was greater - for stimulus lines lying in the upper half of the visual field than for stimulus lines lying in the lowerhalf. The difficulty - - of accounting for fixation point effects by means of physiological optics was discussed.  相似文献   

16.
Sachtler WL  Gillam B 《Perception》2007,36(1):135-144
Just as positional disparities of image features seen with both eyes provide depth information, the presence of an area visible to one eye but not the other within a binocularly viewed scene can indicate an occlusion at a depth discontinuity. The close geometrical association between these two kinds of cues suggests they may both be exploited by stereopsis. To investigate this, we developed a novel binocular stimulus entirely lacking in classical disparity that contains an unmatched vertical sliver which elicits a warping of the surrounding surface to accommodate a depth discontinuity. We measured depth-discrimination performance at a range of stimulus durations, correcting for variations in stimulus visibility, to characterise the decline of the efficacy of the depth signal with limited integration time. Results show a close correspondence of performance for similar stimuli with unmatched features and classical binocular disparity across a sixtyfold range of viewing durations, supporting the notion of a close association between the two types of cues in human stereopsis. Control experiments excluded simple eye-of-origin cues and long-range false matches as explanatory factors.  相似文献   

17.
The experiments reported in this paper were designed to investigate how depth information from binocular disparity and motion parallax cues is integrated in the human visual system. Observers viewed simulated 3-D corrugated surfaces that translated to and fro across their line of sight. The depth of the corrugations was specified by either motion parallax, or binocular disparities, or some combination of the two. The amount of perceived depth in the corrugations was measured using a matching technique.

A monocularly viewed surface specified by parallax alone was seen as a rigid, corrugated surface translating along a fronto-parallel path. The perceived depth of the corrugations increased monotonically with the amount of parallax motion, just as if observers were viewing an equivalent real surface that produced the same parallax transformation. With binocular viewing and zero disparities between the images seen by the two eyes, the perceived depth was only about half of that predicted by the monocular cue. In addition, this binocularly viewed surface appeared to rotate about a vertical axis as it translated to and fro. With other combinations of motion parallax and binocular disparity, parallax only affected the perceived depth when the disparity gradients of the corrugations were shallow. The discrepancy between the parallax and disparity signals was typically resolved by an apparent rotation of the surface as it translated to and fro. The results are consistent with the idea that the visual system attempts to minimize the discrepancies between (1) the depth signalled by disparity and that required by a particular interpretation of the parallax transformation and (2) the amount of rotation required by that interpretation and the amount of rotation signalled by other cues in the display.  相似文献   

18.
Ten Ss rated perceived depth and contour clarity of figures containing binocularly disparate subjective contours. There was no tendency for stereoscopic depth cues to enhance the perceived clarity of subjective contours. Disparity cues that were incompatible with monocular depth cues reduced the depth sensation but did not affect contour clarity. Although subjective contours can be perceived stereoscopically, they are seen in less depth than real contours with the same degree of horizontal disparity.  相似文献   

19.
Three experiments are reported in which the newborn baby's ability to fixate binocularly was investigated, using the corneal reflection technique for measuring eye fixation position. Two criteria for consistent binocular fixation were assessed. These are (1) the two eyes will be optically more divergent when fixating more distant targets, and (2) each eye will be scored as being on-target when corrections for the expected deviations of the pupil center from the fixated stimulus are introduced.In the first experiment vertical arrays of lights were separately shown at distances of 10 and 20 in. from the subjects' eyes (with the retinal image size and luminance of the stimuli held constant). The 12 newborns who gave results at both viewing distances reliably converged to both stimuli, the optical divergence of the pupil centers of the eyes increasing with presentation of the more distant stimulus. In Expt 2 similar stimuli at 5 and 10 in. from the eyes were shown. It was again the case that the subjects reliably converged to the stimulus at 10 in. This was no so for the stimulus at 5 in., and many subjects fixated this stimulus with monocular vision. The failure to converge is probably due to an inability to accommodate to this near distance. In Expt 3 different stimuli (a vertical strip of light, an outline triangle and square, and an array of squares) were presented a constant distance (10 ± 1 in.) from the eyes. The majority of the 15 subjects binocularly fixated all three stimuli: for those subjects who failed to converge consistently to these stimuli the observed alternatives to binocular fixation were monocular fixation, divergent strabismus, and a third category of response that is most probably an indication of inattention to the stimulus. It can be concluded that the newborn baby possesses the ability to fixate binocularly an appropriately presented stimulus, and has the basic requirements for binocular vision.  相似文献   

20.
Normalization of irrelevant dimensions in stimulus comparisons   总被引:1,自引:0,他引:1  
When subjects compared two multidimensional stimuli with respect to a single (relevant) dimension in a same-different task, variation in the irrelevant dimension systematically affected reaction times. For same trials, reaction times increased monotonically with the amount of disparity between the stimuli on the irrelevant dimension. The dimensions were heights and widths of ellipses or hues and tints of color patches. The results were interpreted in terms of a normalization process that internally transforms the irrelevant dimensions of the two stimuli until they are equal. The amount of normalization, and hence same reaction time, increased with increasing disparity on the irrelevant dimension. These results suggest that in order to decide that two objects are equivalent in some criterial respect, it is often necessary to normalize irrelevant disparities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号