首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nakata R  Osada Y 《Animal cognition》2012,15(4):517-523
Like humans, Old World monkeys are known to use configural face processing to distinguish among individuals. The ability to recognize an individual through the perception of subtle differences in the configuration of facial features plays an important role in social cognition. To test this ability in New World monkeys, this study examined whether squirrel monkeys experience the Thatcher illusion, a measure of face processing ability in which changes in facial features are difficult to detect in an inverted face. In the experiment, the monkeys were required to distinguish between a target face and each of the three kinds of distracter faces whose features were altered to be different from those of the target. For each of the pairs of target and distracter faces, four rotation-based combinations of upright and inverted face presentations were used. The results revealed that when both faces were inverted and the eyes of the distracter face were altered by rotating them at an angle of 180° from those of the target face, the monkeys' discrimination learning was obstructed to a greater extent than it was under the other conditions. Thus, these results suggest that the squirrel monkey does experience the Thatcher illusion. Furthermore, it seems reasonable to assume that squirrel monkeys can utilize information about facial configurations in individual recognition and that this facial configuration information could be useful in their social communications.  相似文献   

2.
In the “Thatcher illusion” a face, in which the eyes and mouth are inverted relative to the rest of the face, looks grotesque when shown upright but not when inverted. In four experiments we investigated the contribution of local and global processing to this illusion in normal observers. We examined inversion effects (i.e., better performance for upright than for inverted faces) in a task requiring discrimination of whether faces were or were not “thatcherized”. Observers made same/different judgements to isolated face parts (Experiments 1-2) and to whole faces (Experiments 3-4). Face pairs had the same or different identity, allowing for different process- ing strategies using feature-based or configural information, respectively. In Experiment 1, feature-based matching of same-person face parts yielded only a small inversion effect for normal face parts. However, when feature-based matching was prevented by using the face parts of different people on all trials (Experiment 2) an inversion effect occurred for normal but not for thatcherized parts. In Experiments 3 and 4, inversion effects occurred with normal but not with thatcherized whole faces, on both same- and different-person matching tasks. This suggests that a common configural strategy was used with whole (normal) faces. Face context facilitated attention to misoriented parts in same-person but not in different-person matching. The results indicate that (1) face inversion disrupts local configural processing, but not the processing of image features, and (2) thatcherization disrupts local configural processing in upright faces.  相似文献   

3.
Adults readily detect changes in face patterns brought about by the inversion of eyes and mouth when the faces are viewed upright but not when they are viewed upside down. Research suggests that this illusion (the Thatcher illusion) is caused by the interfering effects of face inversion on the processing of second-order relational information (fine spatial information such as the distance between the eyes). In the current study, 6-month-olds discriminated 'thatcherized' faces when they were viewed upright but not when they were viewed upside down. These results are consistent with the notion that 6-month-olds are sensitive to second-order relational information while processing faces.  相似文献   

4.
This experiment utilized a masked priming paradigm to explore the early processes involved in face recognition. The first experiment investigated implicit processing of the eyes and mouth in an upright face, using prime durations of 33 and 50 ms. The results demonstrate implicit processing of both the eyes and mouth, and support the configural processing theory of face processing. The second experiment used the same method with inverted faces and the third experiment was a combination of Experiments 1 and 2. The fourth experiment utilized misaligned faces as the primes. Based on the pattern of results from these experiments, we suggest that, when a face is inverted, the eyes and mouth are initially processed individually and are not linked until a later stage of processing. An upright face is proposed to be processed by analysis of its configuration, whereas an inverted face is initially processed using first-order relational information, and then converted to an upright representation and transferred to face specific regions for configural analysis.  相似文献   

5.
The relative contribution of componential and configural information to face perception is controversial. We addressed this issue in the present study by examining how componential information and configural information interact during face processing, using Garner’s (1974) speeded classification paradigm. When classifying upright faces varying in components (eyes, nose, and mouth) and configural information (intereyes and nose-mouth spacing), observers could not selectively attend to components without being influenced by irrelevant variation in configural information, and vice versa, indicating that componential information and configural information are integral in upright face processing. Performance with inverted faces showed selective attention to components but not to configural information, implying dominance of componential information in processing inverted faces. When faces varied only in components, selective attention to different components was observed in upright and inverted faces, indicating that facial components are perceptually separable. These results provide strong evidence that integrality of componential and configural information, rather than the relative dominance of either, is the hallmark of upright face perception.  相似文献   

6.
When faces are turned upside down, recognition is known to be severely disrupted. This effect is thought to be due to disruption of configural processing. Recently, Leder and Bruce (2000, Quarterly Journal of Experimental Psychology A 53 513-536) argued that configural information in face processing consists at least partly of locally processed relations between facial elements. In three experiments we investigated whether a local relational feature (the interocular distance) is processed differently in upside-down versus upright faces. In experiment 1 participants decided in which of two sequentially presented photographic faces the interocular distance was larger. The decision was more difficult in upside-down presentation. Three different conditions were used in experiment 2 to investigate whether this deficit depends upon parts of the face beyond the eyes themselves; displays showed the eye region alone, the eyes and nose, or the eyes and nose and mouth. The availability of additional features did not interact with the inversion effect which was observed strongly even when the eyes were shown in isolation. In experiment 3 all eyes were turned upside down in the inverted face condition as in the Thatcher illusion (Thompson, 1980 Perception 9 483-484). In this case no inversion effect was found. These results are in accordance with an explanation of the face-inversion effect in which the disruption of configural facial information plays the critical role in memory for faces, and in which configural information corresponds to spatial information that is processed in a way which is sensitive to local properties of the facial features involved.  相似文献   

7.
The present study was aimed at exploring newborns’ ability to recognize configural changes within real face images by testing newborns’ sensitivity to the Thatcher illusion. Using the habituation procedure, newborns’ ability to discriminate between an unaltered face image and the same face with the eyes and the mouth 180° rotated (i.e. thatcherized) was investigated. Newborns were able to discriminate an unaltered from the thatcherized version of the same face when stimuli were presented in the canonical upright orientation (Experiment 1), but failed to discriminate the same stimuli when they were presented upside‐down (Experiment 2). The results indicate that sensitivity to fine spatial information (defined as second‐order relational information) in processing upright faces is already present at birth.  相似文献   

8.
Lewis MB 《Perception》2001,30(6):769-774
Inversion is especially detrimental to the processing of faces. This is clearly demonstrated by the Thatcher illusion. It has been suggested that this detriment is due to a loss of holistic or configural processing for inverted faces (Bartlett and Searcy, 1993 Cognitive Psychology 25 281-316). Stürzel and Spillmann (2000 Perception 29 937-942) suggest that this loss of configural processing occurs suddenly as a face is rotated slowly from upright to inverted. This hypothesis is tested in a study of the reaction times taken to indicate that a face has been Thatcherised at various angles of orientation. The results suggest that there is a gradual loss of configural information rather than a rapid switch from one type of processing to another.  相似文献   

9.
The Thatcher illusion (Thompson, 1980) is considered to be a prototypical illustration of the notion that face perception is dependent on configural processes and representations. We explored this idea by examining the relative contributions of perceptual and decisional processes to the ability of observers to identify the orientation of two classes of forms-faces and churches-and a set of their component features. Observers were presented with upright and inverted images of faces and churches in which the components (eyes, mouth, windows, doors) were presented either upright or inverted. Observers first rated the subjective grotesqueness of all of the images and then performed a complete identification task in which they had to identify the orientation of the overall form and the orientation of each of the interior features. Grotesqueness ratings for both classes of image showed the standard modulation of rated grotesqueness as a function of orientation. The complete identification results revealed violations of both perceptual and decisional separability but failed to reveal any violations of within-stimulus (perceptual) independence. In addition, exploration of a simple bivariate Gaussian signal detection model of the relationship between identification performance and judged grotesqueness suggests that within-stimulus violations of perceptual independence on their own are insufficient for producing the illusion. This lack of evidence for within-stimulus configurality suggests the need for a critical reevaluation of the role of configural processing in the Thatcher illusion. (PsycINFO Database Record (c) 2011 APA, all rights reserved).  相似文献   

10.
This paper reports on the use of an eye-tracking technique to examine how chimpanzees look at facial photographs of conspecifics. Six chimpanzees viewed a sequence of pictures presented on a monitor while their eye movements were measured by an eye tracker. The pictures presented conspecific faces with open or closed eyes in an upright or inverted orientation in a frame. The results demonstrated that chimpanzees looked at the eyes, nose, and mouth more frequently than would be expected on the basis of random scanning of faces. More specifically, they looked at the eyes longer than they looked at the nose and mouth when photographs of upright faces with open eyes were presented, suggesting that particular attention to the eyes represents a spontaneous face-scanning strategy shared among monkeys, apes, and humans. In contrast to the results obtained for upright faces with open eyes, the viewing times for the eyes, nose, and mouth of inverted faces with open eyes did not differ from one another. The viewing times for the eyes, nose, and mouth of faces with closed eyes did not differ when faces with closed eyes were presented in either an upright or inverted orientation. These results suggest the possibility that open eyes play an important role in the configural processing of faces and that chimpanzees perceive and process open and closed eyes differently.  相似文献   

11.
Stürzel F  Spillmann L 《Perception》2000,29(8):937-942
The expression of a face with its eyes and mouth inverted changes from 'pleasant' to 'grotesque' as the stimulus is rotated from 180 degrees to 0 degree (Thatcher illusion). We determined the angular orientation at which this change occurred for three manipulated faces. Mean thresholds for eighteen observers were found to lie between 94 degrees and 100 degrees relative to the vertical with an average overlap of about 15 degrees between an observer's ascending and descending thresholds. The sudden nature and relatively narrow zone of the changeover suggest a neuronal step-tuning of hypothetical face cells in the human brain, underlying the holistic ('grotesque') versus componential ('pleasant') processing of upright versus upside-down faces. Findings are discussed within the framework of cognitive, neuroimaging, and single-cell studies.  相似文献   

12.
Parr LA  Heintz M 《Animal cognition》2008,11(3):467-474
The face inversion effect, or impaired recognition of upside down compared to upright faces, is used as a marker for the configural processing of faces in primates. The inversion effect in humans and chimpanzees is strongest for categories of stimuli for which subjects have considerable expertise, primarily conspecifics’ faces. Moreover, discrimination performance decreases linearly as faces are incrementally rotated from upright to inverted. This suggests that rotated faces must be transformed, or normalized back into their most typical viewpoint before configural processing can ensue, and the greater the required normalization, the greater the likelihood of errors resulting. Previous studies in our lab have demonstrated a general face inversion effect in rhesus monkeys that was not influenced by expertise. Therefore, the present study examined the influence of rotation angle on the visual perception of face and nonface stimuli that varied in their level of expertise to further delineate the processes underlying the inversion effect in rhesus monkeys. Five subjects discriminated images in five orientation angles. Results showed significant linear impairments for all stimulus categories, including houses. However, compared to the upright images, only rhesus faces resulted in worse performance at rotation angles greater than 45°, suggesting stronger configural processing for stimuli for which subjects had the greatest expertise.  相似文献   

13.
Using traditional face perception paradigms the current study explores unfamiliar face processing in two neurodevelopmental disorders. Previous research indicates that autism and Williams syndrome (WS) are both associated with atypical face processing strategies. The current research involves these groups in an exploration of feature salience for processing the eye and mouth regions of unfamiliar faces. The tasks specifically probe unfamiliar face matching by using (a) upper or lower face features, (b) the Thatcher illusion, and (c) featural and configural face modifications to the eye and mouth regions. Across tasks, individuals with WS mirror the typical pattern of performance, with greater accuracy for matching faces using the upper than using the lower features, susceptibility to the Thatcher illusion, and greater detection of eye than mouth modifications. Participants with autism show a generalized performance decrement alongside atypicalities, deficits for utilizing the eye region, and configural face cues to match unfamiliar faces. The results are discussed in terms of feature salience, structural encoding, and the phenotypes typically associated with these neurodevelopmental disorders.  相似文献   

14.
Using traditional face perception paradigms the current study explores unfamiliar face processing in two neurodevelopmental disorders. Previous research indicates that autism and Williams syndrome (WS) are both associated with atypical face processing strategies. The current research involves these groups in an exploration of feature salience for processing the eye and mouth regions of unfamiliar faces. The tasks specifically probe unfamiliar face matching by using (a) upper or lower face features, (b) the Thatcher illusion, and (c) featural and configural face modifications to the eye and mouth regions. Across tasks, individuals with WS mirror the typical pattern of performance, with greater accuracy for matching faces using the upper than using the lower features, susceptibility to the Thatcher illusion, and greater detection of eye than mouth modifications. Participants with autism show a generalized performance decrement alongside atypicalities, deficits for utilizing the eye region, and configural face cues to match unfamiliar faces. The results are discussed in terms of feature salience, structural encoding, and the phenotypes typically associated with these neurodevelopmental disorders.  相似文献   

15.
The face-inversion effect (FIE) is explained by the configural-processing hypothesis. It proposes that inversion disrupts configural information processing (spatial links among facial features) and leaves the processing of featural information (eyes, nose, and mouth) comparatively intact. According to this hypothesis, an inverted isolated facial feature cannot show a feature-inversion effect--that is, behavior similar to the FIE--since all the spatial links between it and the other features in a face are eliminated; that is, the configural information is removed. The findings of the present study, which show that isolated eyes do exhibit the feature-inversion effect, support the extended configural-processing hypothesis. This proposes that inversion also impairs processing of the configural information within the eyes themselves. Removal of the brows in whole faces tended to interfere with processing of the configural information in the upright position but to facilitate processing in the inverted position.  相似文献   

16.
Successful integration of individuals in macaque societies suggests that monkeys use fast and efficient perceptual mechanisms to discriminate between conspecifics. Humans and great apes use primarily holistic and configural, but also feature-based, processing for face recognition. The relative contribution of these processes to face recognition in monkeys is not known. We measured face recognition in three monkeys performing a visual paired comparison task. Monkey and humans faces were (1) axially rotated, (2) inverted, (3) high-pass filtered, and (4) low-pass filtered to isolate different face processing strategies. The amount of time spent looking at the eyes, mouth, and other facial features was compared across monkey and human faces for each type of stimulus manipulation. For all monkeys, face recognition, expressed as novelty preference, was intact for monkey faces that were axially rotated or spatially filtered and was supported in general by preferential looking at the eyes, but was impaired for inverted faces in two of the three monkeys. Axially rotated, upright human faces with a full range of spatial frequencies were also recognized, however, the distribution of time spent exploring each facial feature was significantly different compared to monkey faces. No novelty preference, and hence no inferred recognition, was observed for inverted or low-pass filtered human faces. High-pass filtered human faces were recognized, however, the looking pattern on facial features deviated from the pattern observed for monkey faces. Taken together these results indicate large differences in recognition success and in perceptual strategies used by monkeys to recognize humans versus conspecifics. Monkeys use both second-order configural and feature-based processing to recognize the faces of conspecifics, but they use primarily feature-based strategies to recognize human faces.  相似文献   

17.
面孔知觉可能在区域尺度上发生多维信息整合, 但迄今无特异性实验证据。本研究在两个实验中操纵面孔眼睛区域或嘴巴区域的单维构型或特征信息, 测量人们觉察单维变化或跨维共变的敏感度, 以此检测面孔区域尺度上的多维信息整合有何现象与规律, 进而揭示面孔知觉的多维信息整合机制。实验获得3个发现:(1)正立面孔眼睛区域的信息变化觉察呈现出“跨维共变增益效应”, 跨维信息共变觉察的敏感度显著高于任意一种单维信息变化觉察的敏感度; (2)“跨维共变增益效应”只在正立面孔的眼睛区域出现, 在倒置面孔的眼睛区域、正立面孔的嘴巴区域或倒置面孔的嘴巴区域都没有出现, 因此具有面孔区域特异性和面孔朝向特异性; (3)就单维信息变化觉察而言, 眼睛区域的敏感度不会受到面孔倒置的损伤, 但是嘴巴区域的敏感度会受到面孔倒置的显著损伤。综合可知, 面孔知觉确实会发生区域尺度上的信息整合, 它不是普遍性的信息量效应, 而是特异性的眼睛效应(只发生在正立面孔的眼睛区域)。这是面孔整体加工(face holistic processing)在单维信息分辨和多维信息整合之间建立联系的必经环节。这提示我们对全脸多维信息知觉整合的理解需要从传统的面孔整体加工假设升级到以眼睛为中心的层级化多维信息整合算法(a hierarchical algorithm for multi-dimensional information integration)。  相似文献   

18.
Several researchers have proposed that developmental improvements in children's face recognition abilities might reflect an increasing reliance on configural information (i.e. spatial relations between features) in faces (Carey & Diamond, 1994; Mondloch, Le Grand & Maurer, 2002). We investigated 4- and 5-year-olds' use of configural information for upright and inverted faces using Tanaka and Sengco's (1997) configural change paradigm. Participants saw a photograph of a child's face (e.g. Luke). Memory for features (e.g. Luke's mouth) was then tested in a face with the same configuration as the study face (e.g. Luke's face), in a face with a novel spatial configuration (e.g. Luke's face with the eyes shifted further apart), and presented on their own (e.g. Luke's mouth alone). We found that preschoolers and adults recognized target features from upright faces better when tested in the context of a face with the same configuration as the study face, than when they were embedded in a face with a new spatial configuration or when they were presented in isolation. This effect was lost when faces were inverted. The results suggest that adult-like styles of face processing are present from 4 years of age.  相似文献   

19.
Carbon CC  Leder H 《Perception》2005,34(9):1117-1134
We investigated the early stages of face recognition and the role of featural and holistic face information. We exploited the fact that, on inversion, the alienating disorientation of the eyes and mouth in thatcherised faces is hardly detectable. This effect allows featural and holistic information to be dissociated and was used to test specific face-processing hypotheses. In inverted thatcherised faces, the cardinal features are already correctly oriented, whereas in undistorted faces, the whole Gestalt is coherent but all information is disoriented. Experiment 1 and experiment 3 revealed that, for inverted faces, featural information processing precedes holistic information. Moreover, the processing of contextual information is necessary to process local featural information within a short presentation time (26 ms). Furthermore, for upright faces, holistic information seems to be available faster than for inverted faces (experiment 2). These differences in processing inverted and upright faces presumably cause the differential importance of featural and holistic information for inverted and upright faces.  相似文献   

20.
This study tests whether the face-processing system of humans and a nonhuman primate species share characteristics that would allow for early and quick processing of socially salient stimuli: a sensitivity toward conspecific faces, a sensitivity toward highly practiced face stimuli, and an ability to generalize changes in the face that do not suggest a new identity, such as a face differently oriented. The look rates by adult tamarins and humans toward conspecific and other primate faces were examined to determine if these characteristics are shared. A visual paired comparison (VPC) task presented subjects with either a human face, chimpanzee face, tamarin face, or an object as a sample, and then a pair containing the previous stimulus and a novel stimulus was presented. The stimuli were either presented all in an upright orientation, or all in an inverted orientation. The novel stimulus in the pair was either an orientation change of the same face/object or a new example of the same type of face/object, and the stimuli were shown either in an upright orientation or in an inverted orientation. Preference to novelty scores revealed that humans attended most to novel individual human faces, and this effect decreased significantly if the stimuli were inverted. Tamarins showed preferential looking toward novel orientations of previously seen tamarin faces in the upright orientation, but not in an inverted orientation. Similarly, their preference to look longer at novel tamarin and human faces within the pair was reduced significantly with inverted stimuli. The results confirmed prior findings in humans that novel human faces generate more attention in the upright than in the inverted orientation. The monkeys also attended more to faces of conspecifics, but showed an inversion effect to orientation change in tamarin faces and to identity changes in tamarin and human faces. The results indicate configural processing restricted to particular kinds of primate faces by a New World monkey species, with configural processing influenced by life experience (human faces and tamarin faces) and specialized to process orientation changes specific to conspecific faces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号