首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The authors investigated whether the salience of dynamic visual information in a video-aiming task mediates the specificity of practice. Thirty participants practiced video-aiming movements in a full-vision, a weak-vision, or a target-only condition before being transferred to the target-only condition without knowledge of results. The full- and weak-vision conditions resulted in less endpoint bias and variability in acquisition than did the target-only condition. Going from acquisition to transfer resulted in a large increase in endpoint variability for the full-vision group but not for the weak-vision or target-only groups. Kinematic analysis revealed that weak dynamic visual cues do not mask the processing of other sources of afferent information; unlike strong visual cues, weak visual cues help individuals calibrate less salient sources of afferent information, such as proprioception.  相似文献   

2.
The authors investigated (a) whether the specificity of practice hypothesis is mediated by the importance of visual afferent information for the control of manual aiming movements and (b) how movement planning and online correction processes to the movement initial impulse are affected by the withdrawal of visual information in transfer. In acquisition, participants (N = 40) aimed at targets of different sizes in a full-vision or in a target-only condition before being transferred to a target-only condition without knowledge of results. The results supported the hypothesis that learning is specific to the source or sources of afferent information that are more likely to ensure optimal performance. The results also suggested that individuals will not always use visual afferent information more extensively when aiming at a small rather than at a large target. Instead, in a temporally constrained task, the relative efficiency of visually based corrections appears to mediate how exclusively an individual will rely on online visual afferent information for movement control. Finally, the detailed kinematic analysis performed in the present study clearly indicated that online modifications to the movement primary impulse are possible, arguing for a continuous or pseudo-continuous control of relatively slow aiming movements on the basis of visual afferent input.  相似文献   

3.
The withdrawal of vision of the arm during a manual aiming task has been found to result in a large increase in aiming error, regardless of the amount of practice in normal vision before its withdrawal. In the present study, the authors investigated whether the increase in error reflects the domination of visual afferent information over the movement representation developed during practice to the detriment of other sources of afferent information or whether it reflects only transformation errors of the location of the target from an allocentric to an egocentric frame of reference. Participants (N = 40) performed aiming movements with their dominant or nondominant arm in a full-vision or target-only condition. The results of the present experiment supported both of those hypotheses. The data indicated that practice does not eliminate the need for visual information for optimizing movement accuracy and that learning is specific to the source or sources of afferent information more likely to ensure optimal accuracy during practice. In addition, the results indicated that movement planning in an allocentric frame of reference might require simultaneous vision of the arm and the target. Finally, practice in a target-only condition, with knowledge of results, was found to improve recoding of the target in an egocentric frame of reference.  相似文献   

4.
The authors investigated (a). whether the specificity of practice hypothesis is mediated by the importance of visual afferent information for the control of manual aiming movements and (b). how movement planning and online correction processes to the movement initial impulse are affected by the withdrawal of visual information in transfer. In acquisition, participants (N = 40) aimed at targets of different sizes in a full-vision or in a target-only condition before being transferred to a target-only condition without knowledge of results. The results supported the hypothesis that learning is specific to the source or sources of afferent information that are more likely to ensure optimal performance. The results also suggested that individuals will not always use visual afferent information more extensively when aiming at a small rather than at a large target. Instead, in a temporally constrained task, the relative efficiency of visually based corrections appears to mediate how exclusively an individual will rely on online visual afferent information for movement control. Finally, the detailed kinematic analysis performed in the present study clearly indicated that online modifications to the movement primary impulse are possible, arguing for a continuous or pseudo-continuous control of relatively slow aiming movements on the basis of visual afferent input.  相似文献   

5.
It has been shown that, even for very fast and short duration movements, seeing one's hand in peripheral vision, or a cursor representing it on a video screen, resulted in a better direction accuracy of a manual aiming movement than when the task was performed while only the target was visible. However, it is still unclear whether this was caused by on-line or off-line processes. Through a novel series of analyses, the goal of the present study was to shed some light on this issue. We replicated previous results showing that the visual information concerning one's movement, which is available between 40 degrees and 25 degrees of visual angle, is not useful to ensure direction accuracy of video-aiming movements, whereas visual afferent information available between 40 degrees and 15 degrees of visual angle improved direction accuracy over a target-only condition. In addition, endpoint variability on the direction component of the task was scaled to direction variability observed at peak movement velocity. Similar observations were made in a second experiment when the position of the cursor was translated to the left or to the right as soon as it left the starting base. Further, the data showed no evidence of on-line correction to the direction dimension of the task for the translated trials. Taken together, the results of the two experiments strongly suggest that, for fast video-aiming movements, the information concerning one's movement that is available in peripheral vision is used off-line.  相似文献   

6.
The question addressed in the present experiment was whether an individual who practices a task under different conditions of afferent information develops different movement representations, each of which is based on the most accurate source of afferent information for movement control. In Experiment 1, participants (N = 23) performed a manual aiming movement in a target-only condition for 520 trials before performing in a normal vision condition for an equivalent amount of practice. Control groups performed all practice trials in either a normal vision or a target-only condition. The results revealed that the movement representation developed in the initial (target-only) practice phase remained accessible for movement planning and control. The results of Experiment 2 indicated, however, that participants did not maintain such a representation when their initial practice in the target-only condition was reduced (40 or 160 trials) before they had extensive practice in normal vision. Those results indicate that extensive practice in a target-only and then in a normal vision condition enables an individual to plan and control his or her movement on the basis of the most efficient source of available afferent information. Because visual afferent information provides optimal information for ensuring movement accuracy, however, if initial practice in the target-only condition is only modest or moderate it is likely that that information source will progressively dominate all other sources of afferent information for movement planning and control.  相似文献   

7.
The withdrawal of vision of the arm during a manual aiming task has been found to result in a large increase in aiming error, regardless of the amount of practice in normal vision before its withdrawal. In the present study, the authors investigated whether the increase in error reflects the domination of visual afferent information over the movement representation developed during practice to the detriment of other sources of afferent information or whether it reflects only transformation errors of the location of the target from an allocentric to an egocentric frame of reference. Participants (N = 40) performed aiming movements with their dominant or nondominant arm in a full-vision or target- only condition. The results of the present experiment supported both of those hypotheses. The data indicated that practice does not eliminate the need for visual information for optimizing movement accuracy and that learning is specific to the source or sources of afferent information more likely to ensure optimal accuracy during practice. In addition, the results indicated that movement planning in an allocentric frame of reference might require simultaneous vision of the arm and the target. Finally, practice in a target-only condition, with knowledge of results, was found to improve recoding of the target in an egocentric frame of reference.  相似文献   

8.
The question addressed in the present experiment was whether an individual who practices a task under different conditions of afferent information develops different movement representations, each of which is based on the most accurate source of afferent information for movement control. In Experiment 1, participants (N = 23) performed a manual aiming movement in a target-only condition for 520 trials before performing in a normal vision condition for an equivalent amount of practice. Control groups performed all practice trials in either a normal vision or a target-only condition. The results revealed that the movement representation developed in the initial (target-only) practice phase remained accessible for movement planning and control. The results of Experiment 2 indicated, however, that participants did not maintain such a representation when their initial practice in the target-only condition was reduced (40 or 160 trials) before they had extensive practice in normal vision. Those results indicate that extensive practice in a target-only and then in a normal vision condition enables an individual to plan and control his or her movement on the basis of the most efficient source of available afferent information. Because visual afferent information provides optimal information for ensuring movement accuracy, however, if initial practice in the target-only condition is only modest or moderate it is likely that that information source will progressively dominate all other sources of afferent information for movement planning and control.  相似文献   

9.
The authors investigated the use of visual feedback as a form of knowledge of results (KR) for the control of rapid (200-250 ms) reaching movements in 40 participants. They compared endpoint accuracy and intraindividual variability of a full-vision group (FV) with those of no-vision groups provided with KR regarding (a) the endpoint in numerical form, (b) the endpoint in visual form, or (c) the endpoint and the trajectory in visual form (DEL). The FV group was more accurate and less variable than were the no-vision groups, and the analysis of limb trajectory variability indicated that their superior performance resulted primarily from better movement planning rather than from online visual processes. The FV group outperformed the DEL group even though both groups were obtaining the same amount of spatial visual information from every movement. That finding suggests that the effectiveness with which visual feedback is processed offline is not a simple function of the amount of visual information available, but depends on how that information is presented.  相似文献   

10.
The authors investigated the use of visual feedback as a form of knowledge of results (KR) for the control of rapid (200-250 ms) reaching movements in 40 participants. They compared endpoint accuracy and intraindividual variability of a full-vision group (FV) with those of no-vision groups provided with KR regarding (a) the endpoint in numerical form, (b) the endpoint in visual form, or (c) the endpoint and the trajectory in visual form (DEL). The FV group was more accurate and less variable than were the no-vision groups, and the analysis of limb trajectory variability indicated that their superior performance resulted primarily from better movement planning rather than from online visual processes. The FV group outperformed the DEL group even though both groups were obtaining the same amount of spatial visual information from every movement. That finding suggests that the effectiveness with which visual feedback is processed offline is not a simple function of the amount of visual information available, but depends on how that information is presented.  相似文献   

11.
Recent results indicate that adults modulate their initial movement impulse toward a stationary visual target by processing visual afferent information. The authors investigated whether the mechanisms responsible for those modulations are already in place in young children or develop as the children grow older. Adults (n = 10) and 6-, 8- and 10-year-old children (ns = 6, 7, and 7, respectively) performed a video-aiming task while vision of the cursor they were moving was (acquisition) or was not (transfer) visible. The results indicated that within-participant variability of the initial impulse trajectory of the children's aiming movement leveled-off in acquisition between peak extent deceleration and the end of the initial impulse, whereas it increased linearly as movement unfolded in transfer. The results also indicated that children modulate their initial movement impulse when visual afferent information is available, although to a lesser extent than adults do, and strongly imply that contrary to past suggestions, the initial impulse of an aiming movement is not ballistic.  相似文献   

12.
The specificity of practice hypothesis predicts the development of a sensorimotor representation specific to the afferent feedback available during skill acquisition (Proteau, 1992; Proteau, Marteniuk, Girouard, & Dugas, 1987). In the present investigation, we used the specificity of practice hypothesis to test whether skill acquisition through visual imagery would lead to the development of a sensory-specific movement representation similar to one resulting from actual practice. To accomplish this objective, participants practiced walking a 12-m linear path in one of three practice conditions, full-vision (FV), no-vision (NV), or visual imagery (VI), for either 10 or 100 trials. Knowledge of spatial and/or temporal results (KR) was provided to participants following each trial during this phase. Following acquisition, participants completed 10 NV trials without KR. An analysis of root-mean-squared-error (RMSE) indicated NV participants were more accurate than both FV and VI participants in the transfer condition. We believe the equivalence in transfer RMSE between FV and VI suggests that there are similarities between the movement representations attained by FV and VI practice.  相似文献   

13.
A modulation of the primary impulse of manual/video-aiming movements performed without visual feedback has been reported. In the present study, we show that this modulation is modified (a) with increased practice, (b) the use of an aligned visual display, and (c) the availability of visual feedback on alternated trials. However, this modulation was not as efficient as that observed in a normal vision condition, which underlines the primary role of vision to ensure endpoint accuracy. Moreover, this modulation was observed only on the extent component of the task. This last observation indicates that proprioception can be used to modulate the extent component of goal-directed movements but that vision is necessary to modulate their direction.  相似文献   

14.
The static or dynamic visual cues required for equilibrium as well as for foot guidance in visually guided locomotion in man were studied using a variety of locomotion supports and illumination and visual conditions. Stroboscopic illumination (brief flashes) and intermittent lighting (longer flashes) were used to control and to vary the visual sampling frequency of static (positional/orientational) visual cues. There were three main findings: First, visual control of foot positioning during locomotion over discontinuous terrain depends mainly upon static visual cues with a low sampling frequency (about 3 Hz); second, visual control of dynamic equilibrium during locomotion over a narrow support depends mainly upon the availability of high frequency static visual cues (up to about 12 Hz); and third, static visual cues required for equilibrium control are extracted from both the peripheral and the central visual field.

Assuming that discrete demands for feedback occur, a simple probabilistic model was proposed, according to which the mean time that elapses following presentation of static visual cues about positions or changes of position accounts for the differences in the difficulty of the various illumination conditions.  相似文献   

15.
This study explored observer performance in using across-trial and within-trial variability information to weight sources based on reliability. Three trained observers performed a multi-element, visual signal-detection task under 3 block-type conditions: a fixed block condition and 2 random conditions. In the fixed block condition, the observers had both within- and across-trial variability information to identify differences in source reliability. The random conditions eliminated the across-trial information, leaving only within-trial variability information in 1 case and neither within- nor across-trial variability information in another case. There was a significant block-type effect. Observers could use differences in across-trial variability of individual sources to assign weights. Although there was a difference in the weights assigned to reliable and unreliable sources in the partial-random condition (in which within-trial variability information was available), only 1 participant showed a significant difference in the weight assignment relative to the full-random condition. Thus, altogether, observers were not very efficient at using within-trial variability to weight sources accordingly.  相似文献   

16.
This study explored observer performance in using across-trial and within-trial variability information to weight sources based on reliability. Three trained observers performed a multi-element, visual signal-detection task under 3 block-type conditions: a fixed block condition and 2 random conditions. In the fixed block condition, the observers had both within- and across-trial variability information to identify differences in source reliability. The random conditions eliminated the across-trial information, leaving only within-trial variability information in 1 case and neither within- nor across-trial variability information in another case. There was a significant block-type effect. Observers could use differences in across-trial variability of individual sources to assign weights. Although there was a difference in the weights assigned to reliable and unreliable sources in the partial-random condition (in which within-trial variability information was available), only 1 participant showed a significant difference in the weight assignment relative to the full-random condition. Thus, altogether, observers were not very efficient at using within-trial variability to weight sources accordingly.  相似文献   

17.
Two studies were conducted to examine the effects of unimodal and multimodal cueing techniques for indicating the location of threats on target acquisition, the recall of information from concurrent communications, and perceived workload. One visual, two auditory (i.e., nonspatial speech and spatial tones [3-D]), and one tactile cue were assessed in Experiment 1. Experiment 2 examined the effects of combinations of the cues assessed in the first investigation: visual + nonspatial speech, visual + spatial tones, visual + tactile, and nonspatial speech + tactile. A unimodal, “visual only” condition was included as a baseline to determine the extent to which a supplementary cue might influence changes in performance and workload. The results of the studies indicated that time to first shot and the percentage of hits can be improved and workload reduced by providing cues about target location. The multimodal cues did not yield significant improvements in performance or workload beyond that achieved by the unimodal visual cue.  相似文献   

18.
Four experiments are reported that examine the ability of cricket batsmen of different skill levels to pick up advance information to anticipate the type and length of balls bowled by swing and spin bowlers. The information available upon which to make the predictive judgements was manipulated through a combination of temporal occlusion of the display and selective occlusion or presentation of putative anticipatory cues. In addition to a capability to pick up advance information from the same cues used by intermediate and low-skilled players, highly skilled players demonstrated the additional, unique capability to pick up advance information from some specific early cues (especially bowling hand and arm cues) to which the less skilled players were not attuned. The acquisition of expert perceptual-motor skill appears to involve not only refinement of information extraction but also progression to the use of earlier, kinematically relevant sources of information.  相似文献   

19.
Four experiments are reported that examine the ability of cricket batsmen of different skill levels to pick up advance information to anticipate the type and length of balls bowled by swing and spin bowlers. The information available upon which to make the predictive judgements was manipulated through a combination of temporal occlusion of the display and selective occlusion or presentation of putative anticipatory cues. In addition to a capability to pick up advance information from the same cues used by intermediate and low-skilled players, highly skilled players demonstrated the additional, unique capability to pick up advance information from some specific early cues (especially bowling hand and arm cues) to which the less skilled players were not attuned. The acquisition of expert perceptual-motor skill appears to involve not only refinement of information extraction but also progression to the use of earlier, kinematically relevant sources of information.  相似文献   

20.
Subjects studied a long list of individual words that were presented either visually or auditorily. Recall was tested immediately or after a filled delay by using either word endings or taxonomic categories as extralist retrieval cues. Two interactions were of particular interest. First, word ending cues were just as effective as taxonomic cues on the immediate test. On the delayed test, however, ending cues were less effective. This result suggests that sensory information encoded about a word decays at a faster rate than semantic information. Second, although modality had no observable influence on the taxonomic cues, word ending cues were more effective when all items were shown visually than when they were presented auditorily. Taken together, these findings indicate that the visual features of words are encoded at study and that this information can be accessed during test if it is recapitulated by the retrieval cue shortly after acquisition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号