首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Joint position sense (JPS) is important in the maintenance of optimal movement coordination of limb segments in functional activities. Researchers have shown that the sensitivity of musculotendinous mechanoreceptors increases as muscle activation levels increase. In the present study, when 25 participants tried to replicate the same presented position, both vector and elevation angle repositioning errors decreased linearly as the external load increased up to 40% above unloaded shoulder torque. However, external load had no effect on plane repositioning error. The results indicated that JPS increased under conditions of increasing external load but only in the direction of the applied load. That finding indicates that JPS acuity improves as muscle activation levels increase.  相似文献   

2.
Abstract

We aimed to investigate the effect of external load on the joint position sense (JPS) accuracy and its relation to the target jump height. The present study also aimed to explore the relationship between force sense (FS) and maximum voluntary isometric contraction (MVIC). Participants’ MVIC levels were determined during the 45-degree knee extension task. Then, participants were asked to execute a knee JPS task with external load (EL-JPS) and with no-load (EL-JPS). To assess jumping accuracy participants were instructed to jump with their 50% of maximum jump height. Results indicated that EL-JPS error values were lower than NL-JPS. EL-JPS was correlated to jumping errors. However, the relationship between NL-JPS and jumping errors was not significant. A significant correlation was found between MVIC and FS errors.  相似文献   

3.
In practice, a single test is used to quantify an individual's proprioception. Previous studies have not found a correlation between joint position sense (JPS) and force sense (FS), which are submodalities of proprioception. The purpose of the present study is to determine if root mean square (RMS) error in JPS and FS are related at the shoulder, controlling for external load and elevation angle. Active shoulder angle and force reproduction protocols were performed. No correlation was found between JPS and FS (r = –.019, p = .941) nor were any individual angle and load combinations significant. The main effect for angle in JPS was significant (p < .001). Follow-up contrast demonstrated a significant (p < .001) decrease in RMS error with increased elevation. A significant load by angle interaction was found for FS (p = .014). Follow-up simple effects tests by angle demonstrated RMS error decreased with load at 50° and 70° but not at 90°. By load, RMS error only decreased for 120% between 50° and 90°. JPS and FS demonstrate different behavior with load and angle. This differing behavior is more likely responsible for the lack of correlation than angle and load differences in JPS and FS protocols.  相似文献   

4.
Shoulder joint position sense (JPS) is important for maintaining stability and contributing to coordinated movements. It is provided by afferent and centrally-derived signals interpreted and integrated by the central nervous system (CNS) for subsequent use. Shoulder JPS is enhanced as the joint approaches end range of motion (ROM) in studies involving internal and external rotation with the arm supported, but this finding has not been confirmed in unconstrained movements. To address this issue, the present study examined the effect of shoulder position in the horizontal plane on JPS at a constant elevation. Twenty-three healthy individuals were recruited from a university campus. Subjects attempted to actively replicate various target positions in both plane and elevation. Target positions consisted of five positions in the horizontal plane, normalized to individual horizontal abduction ROM, at 90° of arm elevation. All target positions were tested three times, and average absolute and variable errors were analyzed for each position. No differences in either absolute (p = .312) or variable (p = .185) errors were observed between positions. These results further support the contention that the muscle spindles are a dominant source of afferent feedback regarding shoulder JPS in unconstrained movements, even approaching end ROM, when the capsuloligamentous receptors are active.  相似文献   

5.
ObjectiveInvestigate the effects of shoulder elevation on repositioning errors in upright and supine body orientations, and examine these effects on anterior and posterior deltoid muscle activation. We hypothesized decreased errors, and altered anterior and posterior deltoid activation with increasing elevation, in both orientations.DesignCrossover trial.SettingUniversity laboratory.ParticipantsThirty-five college-aged participants.InterventionSubjects attempted to replicate target positions of various elevation angles in upright and supine body orientations. Also, anterior and posterior deltoid activation was recorded in each shoulder position and body orientation.Main outcome measuresVector and variable repositioning errors, anterior and posterior deltoid percentage of maximal contraction.ResultsVector error was greater in supine compared to upright at 90° and 110°, but not at 70°. Variable error was larger in supine than upright, but was unaffected by elevation. Anterior deltoid activation increased with elevation in the upright posture only. Posterior deltoid activation increased with elevation across postures.ConclusionsMuscle activation, external torque, and cutaneous sensations may combine to provide afferent feedback, and be used with centrally-generated signals to interpret the state of the limb during movement. Clinicians may prescribe open kinetic chain exercises in the upright posture with the shoulder elevated approximately 90–100°.  相似文献   

6.
This study investigated the influence of wearing unstable shoe construction (WUS) on compensatory postural adjustments (CPA) associated with external perturbations. Thirty-two subjects stood on a force platform resisting an anterior-posterior horizontal force applied to a pelvic belt via a cable, which was suddenly released. They stood under two conditions: barefoot and WUS. The electromyographic (EMG) activity of gastrocnemius medialis, tibialis anterior, rectus femoris, biceps femoris, rectus abdominis, and erector spinae muscles and the center of pressure (CoP) displacement were acquired to study CPA. The EMG signal was used to assess individual muscle activity and latency, antagonist co-activation and reciprocal activation at joint and muscle group levels. Compared to barefoot, WUS led to: (1) increased gastrocnemius medialis activity, (2) increased total agonist activity, (3) decreased antagonist co-activation at the ankle joint and muscle group levels, (4) increased reciprocal activation at the ankle joint and muscle group levels, and (5) decrease in all muscle latencies. No differences were observed in CoP displacement between conditions. These findings demonstrate that WUS led to a reorganization of the postural control system associated to improved performance of some components of postural control responses.  相似文献   

7.
Trunk motor control is essential for athletic performance, and inadequate trunk motor control has been linked to an increased risk of developing low back and lower limb injury in athletes. Research is limited in comparing relationships between trunk neuromuscular control, postural control, and trunk proprioception in athletes from different sporting backgrounds. To test for these relationships, collegiate level long distance runners and golfers, along with non-athletic controls were recruited. Trunk postural control was investigated using a seated balance task. Neuromuscular control in response to sudden trunk loading perturbations was measured using electromyography and kinematics. Proprioceptive ability was examined using active trunk repositioning tasks. Both athlete groups demonstrated greater trunk postural control (less centre of pressure movement) during the seated task compared to controls. Athletes further demonstrated faster trunk muscle activation onsets, higher muscle activation amplitudes, and less lumbar spine angular displacement in response to sudden trunk loading perturbations when compared to controls. Golfers demonstrated less absolute error and variable error in trunk repositioning tasks compared to both runners and controls, suggestive of greater proprioceptive ability. This suggests an interactive relationship between neuromuscular control, postural control, and proprioception in athletes, and that differences exist between athletes of various training backgrounds.  相似文献   

8.
谢琳  王健  张芷  袁立伟  王楚婕 《心理学报》2014,46(7):951-959
本研究基于经典快速举臂试验与落球试验范式, 采用表面肌电信号分析技术, 研究内、外姿势干扰强度的心理预期对腰部姿势肌肉和上肢动作肌肉预期姿势调节(APAs)和补偿姿势调节(CPAs)的影响, 探讨中枢神经系统(CNS)对内、外姿势干扰的控制策略。20名健康受试者先后完成不同负荷强度的快速举臂试验和落球试验, 同步采集腰部竖脊肌、腰部多裂肌和上肢肱二头肌的表面肌电信号, 计算肌肉预激活时间和APAs与CPAs积分肌电值, 观察内、外姿势干扰强度的心理预期对中枢APAs和CPAs控制机制的影响。结果显示内部姿势干扰条件下, 干扰强度的心理预期对腰部多裂肌、腰部竖脊肌和上肢肱二头肌的APAs强度有显著影响, 而对预激活时间和CPAs强度无显著影响; 外部姿势干扰条件下, 干扰强度的心理预期对腰部多裂肌、腰部竖脊肌和肱二头肌的APAs强度有显著影响, 对肱二头肌和腰部多裂肌预激活时间有显著影响, 而对CPAs强度无显著影响。突发可预期姿势干扰条件下姿势的快速反应是一个由CNS主导的神经肌肉运动控制过程。受姿势干扰强度心理预期的影响, CNS对内、外突发姿势干扰条件下腰部姿势肌肉的活动采取了不同的控制策略。在内部姿势干扰条件下, 干扰刺激发生时间明确, CNS主要通过对APAs强度的调节来实现姿势肌肉的优化控制; 而在外部姿势干扰条件下, 干扰刺激时间不明确, CNS则通过对局部稳定肌APAs预激活时间以及局部稳定肌和整体稳定肌APAs强度的双重调节实现姿势肌肉的优化控制。干扰强度的心理预期对姿势肌肉APAs和CPAs的作用表明, 心理预期效应主要源自于CNS对局部和整体稳定肌APAs控制机制的调制。  相似文献   

9.
Human motor control has constraints in terms of its responsiveness, which limit its ability to successfully perform tasks. In a previous study, it was shown that the ability to balance an upright stick became progressively more challenging as the natural frequency (angular velocity without control) of the stick increased. Furthermore, forearm and trunk agonist and antagonist muscle activation increased as the natural frequency of the stick increased, providing evidence that the central nervous system produces agonist-antagonist muscle activation to match task dynamics. In the present study, visual feedback of the stick position was influenced by changing where subject focused on the stick during stick balancing. It was hypothesized that a lower focal height would degrade motor control (more uncertainty in tracking stick position), thus making balancing more challenging. The probability of successfully balancing the stick at four different focal heights was determined along with the average angular velocity of the stick. Electromyographic signals from forearm and trunk muscles were also recorded. As expected, the probability of successfully balancing the stick decreased and the average angular velocity of the stick increased as subjects focused lower on the stick. In addition, changes in the level of agonist and antagonist muscle activation in the forearm and trunk was linearly related to changes in the angular velocity of the stick during balancing. One possible explanation for this is that the central nervous system increases muscle activation to account for less precise motor control, possibly to improve the responsiveness of human motor control.  相似文献   

10.
This study investigated time and direction preparation of motor response to force load while intending to maintain the finger at the initial neutral position. Force load extending or flexing the index finger was given while healthy humans intended to maintain the index finger at the initial neutral position. Electromyographic activity was recorded from the first dorsal interosseous muscle. A precue with or without advanced information regarding the direction of the forthcoming force load was given 1000 ms before force load. Trials without the precue were inserted between the precued trials. A long latency stretch reflex was elicited by force load regardless of its direction, indicating that the long latency stretch reflex is elicited not only by muscle stretch afferents, but also by direction-insensitive sensations. Time preparation of motor response to either direction of force load enhanced the long latency stretch reflex, indicating that time preparation is not mediated by afferent discharge of muscle stretch. Direction preparation enhanced the long latency stretch reflex and increased corticospinal excitability 0–20 ms after force load when force load was given in the direction stretching the muscle. These enhancements must be induced by preset of the afferent pathway mediating segmental stretch reflex.  相似文献   

11.
Visual analogue scale has been shown to reflect subjective feelings but rarely has it been used for musculoskeletal fatigue so in the present study VAS ratings were used to quantify musculoskeletal fatigue. A total of 20 students underwent a fatigue protocol (M age=21.3 yr., SD= 1.0). A series of randomized external loads at 0, 5, 10, 15, 25, 35, and 50% of the maximum voluntary contraction was generated by the BTE Primus and applied at the distal end of the dominant arm, which was sustained at the 90 degrees forward flexion position. After 60 sec. of force exertion for each loading, the subject marked the scale to reflect their extent of fatigue at the shoulder muscle. Analysis showed fatigue scores were significantly correlated with the percentages of maximum load applied (r =.73, p < or = .01). The correlation between higher external loads (25-50% maximum load) and fatigue scores was .57 (p < or = .01) and that for lower external loads (0-15% maximum load) was .44 (p < or = .01). The validity of using a visual analogue scale as a measure of musculoskeletal fatigue requires further study, particularly for a low load.  相似文献   

12.
A number of recent experiments have demonstrated that a movement structure develops during the course of learning a movement sequence that provides the basis for transfer. After learning a movement sequence participants have been shown to be able to effectively produce the sequence when movement demands require that the sequence be rescaled in amplitude or produced with an unpractised set of effectors. The purpose of the present experiment was to determine whether participants, after learning a complex 16-element movement sequence with a 0.567-kg load, could also effectively produce the sequence when the load was decreased (0.0 kg) or increased (1.134 kg). The results indicated that participants were able to effectively compensate for decreased and increased load with virtually no changes in performance characteristics (displacement, velocity, acceleration, and pattern of element durations) while electromyographic (EMG) signals demonstrated that smaller (reduced load) or larger forces (increased load) were spontaneously generated to compensate for the change in load. The muscle activation patterns of the biceps and triceps as well as the level of coactivation appeared to be generally upscaled to generate and dissipate the changes in force requirement needed to compensate for the increased load.  相似文献   

13.
A number of recent experiments have demonstrated that a movement structure develops during the course of learning a movement sequence that provides the basis for transfer. After learning a movement sequence participants have been shown to be able to effectively produce the sequence when movement demands require that the sequence be rescaled in amplitude or produced with an unpractised set of effectors. The purpose of the present experiment was to determine whether participants, after learning a complex 16-element movement sequence with a 0.567-kg load, could also effectively produce the sequence when the load was decreased (0.0 kg) or increased (1.134 kg). The results indicated that participants were able to effectively compensate for decreased and increased load with virtually no changes in performance characteristics (displacement, velocity, acceleration, and pattern of element durations) while electromyographic (EMG) signals demonstrated that smaller (reduced load) or larger forces (increased load) were spontaneously generated to compensate for the change in load. The muscle activation patterns of the biceps and triceps as well as the level of coactivation appeared to be generally upscaled to generate and dissipate the changes in force requirement needed to compensate for the increased load.  相似文献   

14.
Load carriage can be harmful for workers, and alternative interventions to reduce back pain while walking and carrying loads are necessary. Unstable shoes have been used to improve balance and reduce back pain, but it is unknown whether walking wearing unstable shoes while carrying loads anteriorly causes excessive trunk extensors muscle activation. The aim of this study was to investigate the effects of different shoe types and anterior load carriage on gait kinematics and lumbar electromyographic (EMG) activity. Fourteen adults that predominantly walk or stand during the work day were asked to walk with and without carrying 10% of body mass anteriorly while wearing regular walking shoes (REG) and unstable shoes (MBT). The effects of shoe type, load carriage, and shoe × load interactions on the longissimus thoracis (LT) and iliocostalis lumborum (IC) EMG, stride duration, and stride frequency were assessed. MBT shoes induced a significant increase in LT (44.4 ± 35%) and IC EMG (33.0 ± 32%, p < .005), while load carriage increased LT (58.5 ± 41%) and IC EMG (55.1 ± 32%, p < .001). No significant shoe × load interaction was found (p>.05). However, walking wearing MBT shoes while carrying loads induced a 46 ± 40% higher EMG activity compared to walking wearing MBT shoes without load carriage. No effects of shoes or load carriage were found on stride duration and stride frequency. It was concluded that walking wearing MBT shoes and carrying 10% of total body mass induced greater activation of trunk extensors muscle compared to these factors in isolation, such a combination may not influence gait patterns.  相似文献   

15.
BackgroundThe functional significance of the increase in motor output variability with increased visual information processing in older adults remains unclear. Here, we test the hypothesis that increased visual information processing increases muscle activation variability in older adults and impairs their ability to react as fast and as precisely as young adults during a simulated reactive driving task.MethodsFourteen young and sixteen older adults performed a reactive driving simulation task that required responding to unexpected brake lights of the car ahead during a simple reaction time task (low visual information processing condition) and a choice reaction time task with “no go” trials condition (high visual information processing condition). We quantified the following: 1) reactive driving performance – combination of premotor response time, motor response time, and brake force error; 2) motor output variability – brake impulse variability; 3) muscle activation variability – variability in the tibialis anterior (TA) muscle activity.ResultsThe increase in information processing exacerbated the impaired reactive driving performance in older adults. The best predictor of this impairment was the increase in brake force error. The impaired reactive driving performance was related to brake impulse variability and variability in the TA activity.ConclusionsThis study provides novel evidence that increased information processing increases muscle activation variability in older adults with detrimental consequences to their ability to perform a simulated reactive driving task.  相似文献   

16.
Eight participants were presented with auditory or visual targets and then indicated the target's remembered positions relative to their head eight seconds after actively moving their eyes, head or body to pull apart head, retinal, body, and external space reference frames. Remembered target position was indicated by repositioning sounds or lights. Localization errors were found related to head-on-body position but not of eye-in-head or body-in-space for both auditory (0.023 dB/deg in the direction of head displacement) and visual targets (0.068 deg/deg in the direction opposite to head displacement). The results indicate that both auditory and visual localization use head-on-body information, suggesting a common coding into body coordinates--the only conversion that requires this information.  相似文献   

17.
Understanding mechanisms of fatigue of the trunk extensors is important because fatigue is a major factor in predicting incidence of low back pain, but few studies have examined trunk extensor fatigue muscles using differing load types and measured the amplitude and frequency domain of the electromyographic signal to explain these differences. Sixteen healthy participants performed position- and force-matching fatigue tasks in a modified Sørensen test position. Time to task failure was significantly longer during the position-matching task compared to force-matching task (58.3 ± 6.6 min vs. 36.1 ± 5.4 min). This finding is the opposite of that commonly reported for the appendicular muscle, but the mean power frequency shifts and muscle activation patterns of the trunk and hip extensors did not explain this difference. The mean power frequency shifts and muscle activation patterns of the trunk and hip extensors did not explain this difference. The greater time to task failure during the position-matching task may reflect adaptation of the trunk extensor muscles to optimize maintaining specific joint angles more so than specific loads.  相似文献   

18.
In the present study, a moving room paradigm was used that characterized the developmental progression of the effects of visual perturbations on stance control in subjects (N = 39) from 5 months to 10 years of age. Kinematic (probability of recording sway, magnitude of sway response) and electromyographic (probability and patterns of muscle activation, muscle onset latencies) data were found that suggested that visual flow simulating sway activates organized postural muscle responses and results in subsequent sway in standing infants as young as 5 months of age, well before they are able to stand independently. In new walkers, there was an increase in the magnitude of the effect of the visual perturbation, suggesting a possible increase in reliance on visual information. The magnitude of sway decreased to very low levels in older children and adults. The large-amplitude responses observed in the youngest age groups may indicate an inability to switch from an unreliable to a reliable source of perceptual information or an inability to modulate the responses produced following the perturbations. With increasing age and experience, the ability to resolve the conflict increased, with adult subjects demonstrating little sway response.  相似文献   

19.
Push-up exercises are normally performed to challenge muscles that span upper extremity joints. However, it is also recognized that push-ups provide an effective abdominal muscle challenge, especially when the hands are in contact with a labile support surface. The purpose of this study was to compare trunk muscle activation levels and resultant intervertebral joint (IVJ) loading when standard and suspended push-ups were performed, and to quantify and compare the contribution of trunk muscles to IVJ rotational stiffness in both exercises. Eleven recreationally trained male volunteers performed sets of standard and suspended push-ups. Upper body kinematic, kinetic, and EMG data were collected and input into a 3D biomechanical model of the lumbar torso to quantify lumbar IVJ loading and the contributions of trunk muscles to IVJ rotational stiffness. When performing suspended push-ups, muscles of the abdominal wall and the latissimus dorsi were activated to levels that were significantly greater than those elicited when performing standard push-ups (p<.05). As a direct result of these increased activation levels, model-predicted muscle forces increased and consequently led to significantly greater mean (p=.0008) and peak (p=.0012) lumbar IVJ compressive forces when performing suspended push-ups. Also directly resulting from the increased activation levels of the abdominal muscles and the latissimus dorsi during suspended push-ups was increased muscular contribution to lumbar IVJ rotational stiffness (p<.05). In comparison to the standard version of the exercise, suspended push-ups appear to provide a superior abdominal muscle challenge. However, for individuals unable to tolerate high lumbar IVJ compressive loads, potential benefits gained by incorporating suspended push-ups into their resistance training regimen may be outweighed by the risk of overloading low-back tissues.  相似文献   

20.
The present series of studies sought to provide evidence that M would increase under any conditions which make an S more aware of his muscles. The studies demonstrated that at least in women, M increased over a variety of conditions involving heightened muscle awareness. Specifically M increased in conditions utilizing muscle activation, deactivation, hypnosis, and focusing thoughts on the body musculature. The muscle awareness model unlike the sensory-tonic model accounts for increases in M following hyperactivity as well as inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号