首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to investigate the effects of asymmetrical loading on the intersegmental dynamics of the swing phase. Participants were asked to walk on a treadmill for 20 min under three loading conditions: (a) unloaded baseline, (b) 2 kg attached to the dominant limb’s ankle, and (c) post-load, following load removal. Sagittal plane motion data of both legs were collected and an intersegmental dynamics analysis of each swing phase was performed. Comparisons of steady-state responses across load conditions showed that absolute angular impulses of the loaded limb’s hip and knee increased significantly after load addition, and returned to baseline following load removal. Unloaded leg steady-state responses were not different across load conditions. However, after a change in leg inertia both legs experienced a period of adaptation that lasted approximately 40 strides before a steady state walking pattern was achieved. These findings suggest that the central nervous system refined the joint moments over time to account for the altered limb inertia and to maintain the underlying kinematic walking pattern. Maintaining a similar kinematic walking pattern resulted in altered moment profiles of the loaded leg, but similar moment profiles of the unloaded leg compared with the unloaded baseline condition.  相似文献   

2.
The authors investigated how and to what extent visual information and associated task constraints are negotiated in the coordinative structure of playground swinging. Participants (N = 20) were invited to pump a swing from rest to a prescribed maximal amplitude under 4 conditions: normal vision, no vision, and 2 visual conditions involving explicit phasing constraints. In the latter conditions, participants were presented with a flow pattern consisting of a periodically expanding and contracting optical structure. They were instructed to phase the swing motion so that the forward turning point coincided with either the maximal size (enhanced optical flow) or the minimal size (reduced optical flow) of the presented flow pattern. Removal of visual information clearly influenced the swinging behavior, in that intersegmental coordination became more stereotyped, reflecting a general stiffening of the swinger. The conditions involving explicit phasing requirements also affected the coordination, but in an opposite way: The coordination became less stereotyped. The two phasing instructions had differential effects: The intersegmental coordination deviated more from normal swinging (i.e., without phasing constraints) when optical flow was enhanced than when it was reduced. Collectively, those findings show that visual information plays a formative role in the coordinative structure of swinging, in that variations of visual information and task constraints were accompanied by subtle yet noticeable changes in intersegmental coordination.  相似文献   

3.
A bimanual circle drawing task was employed to elucidate the dynamics of intralimb and interlimb coordination. Right-handed subjects were required to produce circles with both hands in either a symmetrical (mirror) mode (i.e. one hand moving clockwise, the other counter-clockwise) or in an asymmetrical mode (i.e. both hands moving clockwise or counter-clockwise). The frequency of movement was scaled by an auditory metronome from 1.50 Hz to 3.25 Hz in8 (8-sec) steps.In the asymmetrical mode,distortions ofthe movement trajectories, transient departures from the target pattern of coordination, and phase wandering were evident as movement frequency was increased. These features suggested loss of stability. Deviations from circular trajectories were most prominent for movements of the left hand. Transient departures from the required mode of coordination were also largely precipitated by the left hand. The results are discussed with reference to manual asymmetries and mechanisms of interlimb and intersegmental coordination.  相似文献   

4.
Much of the work related to lower extremity inertia manipulations has focused on temporal, kinematic and traditional inverse dynamics assessments during locomotion. Intersegmental dynamics is an analytical technique that provides further insights into mechanisms underlying linked-segment motion. The purpose of this study was to determine how intersegmental dynamics during the swing phase of walking are altered during asymmetrical lower extremity loading. Participants walked overground at a speed of 1.57 m s?1 with 0, 0.5, 1.0, and 2.0 kg attached to one foot. Net, interaction, gravitational, and muscle moments were computed. Moment magnitudes at joints of the loaded leg increased systematically with increasing load, whereas unloaded leg moments were unaffected by loading. With increasing load, relative contributions of interaction moments about the knee and hip and gravitational moment about the ankle increased (i.e., 21%, 8%, and 44% increases, respectively), whereas the relative contributions of muscle moments about all three joints declined (i.e., ?4%, ?13%, and ?8% decreases for the ankle, knee, and hip, respectively for unloaded vs. 2.0 kg). These results suggest that altered inertia properties of the limb not only affected the amount of muscular effort required to swing the leg, but also changed the nature of the interaction between segments.  相似文献   

5.
The authors investigated how and to what extent visual information and associated task constraints are negotiated in the coordinative structure of playground swinging. Participants (N = 20) were invited to pump a swing from rest to a prescribed maximal amplitude under 4 conditions: normal vision, no vision, and 2 visual conditions involving explicit phasing constraints. In the latter conditions, participants were presented with a flow pattern consisting of a periodically expanding and contracting optical structure. They were instructed to phase the swing motion so that the forward turning point coincided with either the maximal size (enhanced optical flow) or the minimal size (reduced optical flow) of the presented flow pattern. Removal of visual information clearly influenced the swinging behavior, in that intersegmental coordination became more stereotyped, reflecting a general stiffening of the swinger. The conditions involving explicit phasing requirements also affected the coordination, but in an opposite way: The coordination became less stereotyped. The two phasing instructions had differential effects: The intersegmental coordination deviated more from normal swinging (i.e., without phasing constraints) when optical flow was enhanced than when it was reduced. Collectively, those findings show that visual information plays a formative role in the coordinative structure of swinging, in that variations of visual information and task constraints were accompanied by subtle yet noticeable changes in intersegmental coordination.  相似文献   

6.
Gravity reduction affects the energetics and natural speed of walking and running. But, it is less clear how segmental coordination is altered. Various devices have been developed in the past to study locomotion in simulated reduced gravity. However, most of these devices unload only the body center of mass. The authors reduced the effective gravity acting on the stance or swing leg to 0.16g using different simulators. Locomotion under these conditions was associated with a reduction in the foot velocity and significant changes in angular motion. Moreover, when simulated reduced gravity directly affected the swing limb, it resulted in significantly slower swing and longer foot excursions, suggesting an important role of the swing phase dynamics in shaping locomotor patterns.  相似文献   

7.
Effects of gait pattern and arm swing on intergirdle coordination   总被引:1,自引:0,他引:1  
Mature locomotion in humans is characterized by an anti-phase coordination (moving in opposite directions) between the pelvic and the scapular girdles. This pattern involves a specific relationship between the arm and leg motion is deemed to be most flexible and dynamically efficient. Still, when the arms are involved in another task, like a field player running with a ball in the hands, locomotion is still possible. In order to probe the flexibility of the locomotor synergy, the present study aimed to determine the persistence and the strength of the coordination patterns between the pelvic and scapular girdles when no arm swing was allowed during walking and running. Relative phase, the time difference between the girdle rotations, measured the ongoing inter-girdle coordination of eight healthy participants asked to walk and run with or without arm swing. Results showed that an absence of arm swing led to a change from an anti-phase to in-phase pattern (girdles moving in the same direction) and that an increase in velocity strengthened the adopted pattern. Moreover, the frequency distribution of relative phase for all gait patterns with arm swing proved to be bimodal, indicating that the prevailing anti-phase pattern was always mixed with a noticeable proportion of in-phase coordination. The presence of the in-phase pattern in the easy, natural locomotion with arm swing manifests its persistence and its stability, perhaps pertaining to its prevalence in earlier times in ontogeny or evolution.  相似文献   

8.
Human intra limb gait kinematics were analyzed via statistical and structural pattern recognition methods to determine the role of relative timing of limb segments within and between modes of gait. Five experienced runners were filmed while walking (3-6 km/hour) and running (8-12 km/hour) on a motor driven treadmill. Kinematic data consisted of relative timing of the four phases of the Philippson step cycle and intersegmental limb trajectories, determined from angle-angle diagrams. Despite marked decreases in absolute time durations within gaits remained constant over the speeds which were studied. Although a 2-fold increase in locomotor speed occurred in walking and a 1.5-fold speed increase occurred within running, the percentage of time spent in each of the Philippson phases was not significantly changed. However, significant differences in the time percentages and sequences of the step cycle phases were found between walking and running. Correlations between limb segment trajectories occurring in the different gaits showed strong coherence for overall step cycle patterns, but within step cycle phases and across speeds, selective phases displayed little correspondence.  相似文献   

9.
In performing the sit-to-stand transition, young children (6- to 7-year-olds) were expected to display a movement form similar to that of adults. However, movement consistency was predicted to be poorer in children than in adults because they lack refinement of motor control processes. Kinematic analysis of 10 repetitions of the sit-to-stand movement was carried out for 6 typically developing children and 6 adults. Supporting the authors' prediction of comparable form, no differences were evident between age groups for sequence of joint onsets, proportional duration of segmental motion, or in angle-angle plots of displacement at 2 segments. In contrast, within-participant variability was found to be higher for children: Coefficients of variation for most kinematic measures were twice those seen for adults. The authors interpret the children's lack of movement consistency as a reflection of inadequate stabilization of an internal model of intersegmental dynamics. Whereas adults have attained a skill level associated with refinement of that model, children have not. Children have an additional control problem because changes in body morphology throughout childhood require ongoing updating of the internal model that controls intrinsic dynamics.  相似文献   

10.
In performing the sit-to-stand transition, young children (6- to 7-year-olds) were expected to display a movement form similar to that of adults. However, movement consistency was predicted to be poorer in children than in adults because they lack refinement of motor control processes. Kinematic analysis of 10 repetitions of the sit-to-stand movement was carried out for 6 typically developing children and 6 adults. Supporting the authors' prediction of comparable form, no differences were evident between age groups for sequence of joint onsets, proportional duration of segmental motion, or in angle-angle plots of displacement at 2 segments. In contrast, within-participant variability was found to be higher for children: Coefficients of variation for most kinematic measures were twice those seen for adults. The authors interpret the children's lack of movement consistency as a reflection of inadequate stabilization of an internal model of intersegmental dynamics. Whereas adults have attained a skill level associated with refinement of that model, children have not. Children have an additional control problem because changes in body morphology throughout childhood require ongoing updating of the internal model that controls intrinsic dynamics.  相似文献   

11.
The authors investigated coordination modes that emerged as a function of the interaction between skill level and task constraints in a multiarticular kicking action. Five skilled, 5 intermediate, and 5 novice participants attempted to satisfy specific height and accuracy constraints in kicking a ball over a barrier. Skilled and intermediate groups demonstrated a functional coordination mode involving less joint involvement at the proximal joints and greater joint involvement at distal joints, mimicking a chip-like action in soccer. Conversely, the novice group tended to produce larger ranges of motion throughout the kicking limb in a driving-like kicking action. Key differences were also found for task outcome scores, joint angle-angle relations, and ball-trajectory plots between the skilled and intermediate groups and the novice group. Findings from this study demonstrated that joint involvement during this discrete multiarticular action is a function of skill level and task constraints rather than a consequence of a global freezing-freeing strategy suggested in some previous research. The authors also highlight the merit of using a model of the acquisition of coordination in examining how coordination modes for multiarticular actions differ as a function of skill.  相似文献   

12.
The authors investigated coordination modes that emerged as a function of the interaction between skill level and task constraints in a multiarticular kicking action. Five skilled, 5 intermediate, and 5 novice participants attempted to satisfy specific height and accuracy constraints in kicking a ball over a barrier. Skilled and intermediate groups demonstrated a functional coordination mode involving less joint involvement at the proximal joints and greater joint involvement at distal joints, mimicking a chip-like action in soccer. Conversely, the novice group tended to produce larger ranges of motion throughout the kicking limb in a driving-like kicking action. Key differences were also found for task outcome scores, joint angle-angle relations, and ball-trajectory plots between the skilled and intermediate groups and the novice group. Findings from this study demonstrated that joint involvement during this discrete multiarticular action is a function of skill level and task constraints rather than a consequence of a global freezing-freeing strategy suggested in some previous research. The authors also highlight the merit of using a model of the acquisition of coordination in examining how coordination modes for multiarticular actions differ as a function of skill.  相似文献   

13.
Bullfrog tadpoles with cervical or midthoracic transection of the spinal cord were allowed to recover for 5 weeks, at which time axonal growth across the transection site was assessed by transport of horseradish peroxidase. Weekly behavioral tests included those for posture, spontaneous locomotion, cutaneously elicited swimming, and intersegmental coordination. Behavioral and electrophysiological assessments suggest that behavioral recovery depends, at least in part, on the growth of fibers across the transection site. Anatomical and behavioral recovery does not appear to differ with the level of spinal transection, but there was greater sparing of posture, spontaneous locomotion, and stimulus-induced locomotion in tadpoles with thoracic transection of the spinal cords.  相似文献   

14.
The nature of visually guided locomotion was examined in an experiment where subjects had to walk to targets under various conditions. Target distance was manipulated so that subjects had to (a) lengthen their paces in order to hit the target; (b) shorten their paces; (c) make no adjustments to their standard pace length at all. They did this under four visual conditions: (a) normal vision; (b) with vision restricted to a "snapshot" each time the foot that was to be placed on the target was on the ground; (c) with a snapshot each time the foot to be placed was in the swing phase; and (d) no vision after departure fro the target. The results show that the subjects succeed in reaching the target in most cases. However, the smoothness and fluidity of their movements vary significantly between conditions. Under normal vision or where visual snapshots are delivered when the pointing foot is on the ground, locomotion is smoothly regulated as the subjects approach the target. where snapshots are delivered when the pointing foot is in the swing phase, regulation becomes clumsy and ill coordinated. Where no vision is available at all during the approach, adjustments are made, but these are least coordinated of all. The results show that well-coordinated visual regulation does not require continuous visual guidance but depends on intermittent information being available at the appropriate times in the action sequence. Such timing is often more important than the total amount of information that is available for guidance.  相似文献   

15.
Previous studies have shown that inclusion of arm swing in gait rehabilitation leads to more effective walking recovery in patients with walking impairments. However, little is known about the correct arm-swing trajectories to be used in gait rehabilitation given the fact that changes in walking conditions affect arm-swing patterns. In this paper we present a comprehensive look at the effects of a variety of conditions on arm-swing patterns during walking. The results describe the effects of surface slope, walking speed, and physical characteristics on arm-swing patterns in healthy individuals. We propose data-driven mathematical models to describe arm-swing trajectories. Thirty individuals (fifteen females and fifteen males) with a wide range of height (1.58–1.91 m) and body mass (49–98 kg), participated in our study. Based on their self-selected walking speed, each participant performed walking trials with four speeds on five surface slopes while their whole-body kinematics were recorded. Statistical analysis showed that walking speed, surface slope, and height were the major factors influencing arm swing during locomotion. The results demonstrate that data-driven models can successfully describe arm-swing trajectories for normal gait under varying walking conditions. The findings also provide insight into the behavior of the elbow during walking.  相似文献   

16.
Inter-segmental coordination can be influenced by chronic low back pain (CLBP). The sagittal plane lower extremities inter-segmental coordination pattern and variability, in conjunction with the pelvis and trunk, were assessed in subjects with and without non-specific CLBP during free-speed walking. Kinematic data were collected from 10 non-specific CLBP and 10 non-CLBP control volunteers while the subjects were walking at their preferred speed. Sagittal plane time-normalized segmental angles and velocities were used to calculate continuous relative phase for each data point. Mean absolute relative phase (MARP) and deviation phase (DP) were derived to quantify the trunk-pelvis and bilateral pelvis-thigh, thigh-shank and shank-foot coordination pattern and variability over the stance and swing phases of gait. Mann-Whitney U test was employed to compare the means of DP and MARP values between two groups (same side comparison). Statistical analysis revealed more in-phase/less variable trunk-pelvis coordination in the CLBP group (P < 0.05). CLBP group demonstrated less variable right or left pelvis-thigh coordination pattern (P < 0.05). Moreover, the left thigh-shank and left shank-foot MARP values in the CLBP group, were more in-phase than left MARP values in the non-CLBP control group during the swing phase (P < 0.05). In conclusion, the sagittal plane lower extremities, pelvis and trunk coordination pattern and variability could be generally affected by CLBP during walking. These changes can be possible compensatory strategies of the motor control system which can be considered in the CLBP subjects.  相似文献   

17.
This study examined the prospective control of the swing phase in young healthy adults while walking at preferred speed over unobstructed ground and during obstacle clearance. Three aspects of swing were examined: (1) the relation of the body Center of Mass (CoM) to the stability boundaries at the base of support; (2) a dynamic time-to-contact analysis of the CoM and swing foot to these boundaries; and (3) the role of head movements in the prospective control of gait and field of view assessment. The time-to-contact analysis of CoM and swing foot showed less stable swing dynamics in the trail foot compared to the lead foot in the approach to the unstable equilibrium, with the CoM leading the swing foot and crossing the anterior stability boundary before the swing foot. Compensations in temporal coupling occurred in the trail limb during the late swing phase. Time-to-contact analysis of head movement showed stronger prospective control of the lead foot, while fixation of the field of view occurred earlier in swing and was closer to the body in the obstacle condition compared to unobstructed walking. The dynamic time-to-contact analysis offers a new approach to assessing the unstable swing phase of walking in different populations.  相似文献   

18.
Methods for determining the degree of similarity between relative motion plots are examined and computational methods outlined. Hypothetical examples are provided to simply illustrate the function of selected indices of pattern shape, size, and orientation. Methods of using a composite of these measures to assess asymmetry, abnormality, or refinements in motor function are discussed. Statistical procedures for determining the reliability of assessments of change in relative motions are presented. A modification to Freeman’s (1961) pattern-recognition method is suggested as a more parsimonious application to angle-angle data derived in human movement research.  相似文献   

19.
Learning a bimanual coordination task (synchronization to a visually specified phasing relation) was studied as a dynamical process over 5 days of practicing a required phasing pattern. Systematic probes of the attractor layout of the 5 Ss' coordination dynamics (expressed through a collective variable, relative phase) were conducted before, during, and after practice. Depending on the relationship between the initial coordination dynamics (so-called intrinsic dynamics) and the pattern to be learned (termed behavioral information, which acts as an attractor of the coordination dynamics toward the required phasing), qualitative changes in the phase diagram occurred with learning, accompanied by quantitative evidence for loss of stability (phase transitions). Such effects persisted beyond 1 week. The nature of change due to learning (e.g., abrupt vs. gradual) is shown to arise from the cooperative or competitive interplay between behavioral information and the intrinsic dynamics.  相似文献   

20.
Weighting the arms during locomotion results in decreased swing motion and increased shoulder muscle activity. To determine the functional relevance of this activity, participants walked on a treadmill with the arms unweighted, or weighted unilaterally or bilaterally. Similar to past work, the weighted arms decreased in swing amplitude and increased their shoulder muscle activity. A close examination of shoulder muscle activities in specific regions of the arm swing cycle suggested these muscles primarily acted eccentrically for all weighting conditions. These findings suggest that the increased shoulder muscle activities when weighting the arms act to dampen the arms when the inertial characteristics of the arms are altered, as opposed to assisting in driving swing of the heavier arms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号