首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Perceptual constancy of uisual motion is usually described as the degree of correspondence between physical and perceived characteristics of motion in the external world. To study it, one has to assess the relationship between physical motion, its retinal image, and its perception. We describe a quantitative estimation procedure for a measure K denoting the degree of perceptual constancy of background target motions noncollinear to the eye movements during ocular pursuit. The calculation of K is based on three vectors describing the target motion (1) as it is physically, (2) as it is mapped to the retina, and (3) as it is perceived, but only the direction of the perceptual motion vector has to be determined experimentally. K allows for quantitative comparison between experiments with a variety of parameters in visual motton displays.  相似文献   

2.
Using monocular observation, open-loop measurements were obtained of the perceptions of linear size, angular size, and sagittal motion associated with the terminal (largest or smallest) stimuli of repetitive optical expansions and contractions using 1-D or 2-D displays produced on a video monitor at a constant distance from the observer. The perceptions from these dynamic conditions were compared with those from static conditions in which the stimuli were of the same physical size and at the same physical distance as the terminal dynamic stimuli, but that were not part of the optical expansions or contractions. One result, as expected, was that the measures of perceived linear and angular size differed, but also, unexpectedly, some substantial errors were associated with the measures of perceived angular size. Another result was that the amount of size constancy was considerably less than was expected from the obtained amount of perceived motion in depth. Consistent with the latter result, it was found that the size-distance invariance hypothesis (SDIH), using the physical visual angles of the terminal stimuli, predicted only about half of the perceived motion in depth obtained with the dynamic changes. Using the obtained measures of perceived visual angles in the SDIH increased rather than decreased the error in predicting the amount of motion in depth as perceived. An additional experiment suggests that at least some of the error in the measurement of the perceived visual angle is a consequence of error in the perceived origin of the visual angles. The absence of the expected relation between size constancy and perceived motion in depth in the dynamic conditions is hypothesized to be due to cognitive processes associated with off-sized perceptions of the stimuli.  相似文献   

3.
The allocation of perceived size and perceived motion or displacement in depth resulting from retinal size changes (changes in the visual angle of the stimulus) was investigated in situations in which all other cues of perceived changes in distance were absent. The allocation process was represented by the size—distance invariance hypothesis (SDIH), in which, for a given change in visual angle, the perceived depth was determined only by the amount of size constancy available. The changes in perceived size and perceived distance (perceived depth) were measured by kinesthetic observer (open-loop) adjustments in five situations. These situations consisted of optical expansions or contractions presented successively or simultaneously or as a mixture of successive and simultaneous presentations. The amounts of perceived motion or perceived displacement in depth obtained by kinesthetic measures were compared with those obtained from size constancy measures as applied to the SDIH. This latter measure accounted for more of the perceived depth obtained from simultaneous and mixed situations than it did for the perceived depth from the successive situations and more for the perceived depth obtained from the expansion than from the contraction situations, whether these were simultaneous or mixed. Perceived rigidity of the stimulus (perfect size constancy) clearly was not obtained in any of the situations. Significant partial size constancy and some predictive ability of the perceived sagittal motion was found using the SDIH in all the situations except in the successively presented contraction situation, with the predictive ability from the SDIH increasing with increases in the amount of size constancy. The difference between the observer’s measures of the perceived motion or displacement in depth and the amount of perceived motion or displacement predicted from the perceptions of linear size using the SDIH is asserted to be due to a cognitive process associated with the perception of the different stimulus sizes as off-sized objects.  相似文献   

4.
A flashed stimulus is perceived as spatially lagging behind a moving stimulus when they are spatially aligned. When several elements are perceptually grouped into a unitary moving object, a flash presented at the leading edge of the moving stimulus suffers a larger spatial lag than a flash presented at the trailing edge (K. Watanabe. R. Nijhawan. B. Khurana, & S. Shimojo. 2001). By manipulation of the flash onset relative to the motion onset, the present study investigated the order of perceptual operations of visual motion grouping and relative visual localization. It was found that the asymmetric mislocalization was observed irrespective of physical and/or perceptual temporal order between the motion and flash onsets. Thus, grouping by motion must be completed to define the leading-trailing relation in a moving object before the visual system explicitly represents the relative positions of moving and flashed stimuli.  相似文献   

5.
When asked to identify targets embedded within a rapid consecutive stream of visual stimuli, observers are less able to identify the second target (T2) when it is presented within half a second of the first (T1); this deficit has been termed the attentional blink (AB). Rapid serial visual presentation methodology was used to investigate the relationship between the AB and object files (episodic representations implicated in object identification and perceptual constancy). An inverse linear relationship was found between the degree of object file continuity and AB magnitude. An important locus of object file continuity was the intervening stream items between T1 and T2. The results are discussed in terms of the heuristic of the object file to preserve limited attentional capacity.  相似文献   

6.
Functions reliably describing perception of motion in depth have been established experimentally by using psychophysical methods of size and distance estimations and threshold measurements. The stimuli were generated with a new hybrid technique yielding an image refresh rate of 1667 Hz. In this way it was possible to generate rapid expansions and contractions of the moving checkerboard pattern constituting the stimulus for depth motion perception. The results showed that perceived size constancy as well as depth impression varied with oscillation frequency. Under the conditions of slow motions (oscillation frequencies around 2 Hz), perfect size constancy was obtained. Above that limit, size constancy systematically decreased, and with oscillation frequencies of about 5 Hz the perceived size constancy was close to zero when small-sized patterns were used. Under the conditions of wide field stimulation (when the pattern subtended 66 degrees of visual angle), the cut-off limit increased to 16 Hz. Since the perception of depth motion amplitudes as well as perceived velocities of the visual object are related to perceived size constancy, the findings have certain implications for theoretical explanations of depth motion perception. Received: 15 December 1997 / Accepted: 21 December 1998  相似文献   

7.
We suppose that the visual nervous system possesses compensatory rectifying mechanisms by means of which it achieves “constancy” of visual recognition despite variation in physical appearance of the stimulus object. Using geometric rotations, reflections, and other transformations of text as the physical variation, we studied the recognizability of the texts and the influence that practice in reading one type of transformation exerted on the recognition of others. The mathematical structure of the training set was used as a clue to the perceptual mechanisms mediating transfer, isolating perceptual functions involving a geometric transformation and an ordinal operator. The main feature of the theory is its emphasis upon a dialogue or interaction between ongoing problem-solving processes in visual rectification and the sample being recognized. The theory developed is contrasted with other theories of pattern recognition in which concepts such as stimulus generalization, tuned detectors, and preprocessing play major roles. A relation of this theory to problems encountered among disabled readers (“dyslexics”) is also brought out.  相似文献   

8.
Experiments are reported in which it was found that, with the angular speed of a visual surround held constant, the perceived speed of rotary self-motion increased linearly with increasing perceived distance of this surround. This finding was in agreement with a motion constancy equation derived from a consideration of object-referred motion perception. Since information concerning distance is necessary for the perception of linear but not angular speed, this finding supports the conclusion that visually perceived rotary self-motion perception is dependent upon perceived linear surround motion at least in the horizontal plane. The visual motion constancy mechanism which operates for object-referred motion can apparently not be switched off for the special case of self-motion perception.  相似文献   

9.
Previous work has shown that abrupt visual onsets capture attention. This occurs even with stimuli that are equiluminant with the background, which suggests that the appearance of a new perceptual object, not merely a change in luminance, captures attention. Three experiments are reported in which this work was extended by investigating the possible role of visual motion in attentional capture. Experiment 1 revealed that motion can efficiently guide attention when it is perfectly informative about the location of a visual search target, but that it does not draw attention when it does not predict the target’s position. This result was obtained with several forms of motion, including oscillation, looming, and nearby moving contours. To account for these and other results, we tested anew-object account of attentional capture in Experiment 2 by using a global/local paradigm. When motion segregated a local letter from its perceptual group, the local letter captured attention as indexed by an effect on latency of response to the task-relevant global configuration. Experiment 3 ruled out the possibility that the motion in Experiment 2 captured attention merely by increasing the salience of the moving object. We argue instead that when motion segregates a perceptual element from a perceptual group, a new perceptual object is created, and this event captures attention. Together, the results suggest that motion as such does not capture attention but that the appearance of a new perceptual object does.  相似文献   

10.
If a pair of dots, diametrically opposed to each other, is flashed in perfect alignment with another pair of dots rotating about the visual fixation point, most observers perceive the rotating dots as being ahead of the flashing dots (flash-lag effect). This psychophysical effect was first interpreted as the result of a perceptual extrapolation of the position of the moving dots. Also, it has been conceived as the result of differential visual latencies between flashing and moving stimuli, arising from purely sensory factors and/or expressing the contribution of attentional mechanisms as well. In a series of two experiments, we had observers judge the relative position between rotating and static dots at the moment a temporal marker was presented in the visual field. In experiment 1 we manipulated the nature of the temporal marker used to prompt the alignment judgment. This resulted in three main findings: (i) the flash-lag effect was observed to depend on the visual eccentricity of the flashing dots; (ii) the magnitude of the flash-lag effect was not dependent on the offset of the flashing dot; and (iii) the moving stimulus, when suddenly turned off, was perceived as lagging behind its disappearance location. Taken altogether, these results suggest that neither visible persistence nor motion extrapolation can account for the perceptual flash-lag phenomenon. The participation of attentional mechanisms was investigated in experiment 2, where the magnitude of the flash-lag effect was measured under both higher and lower predictability of the location of the flashing dot. Since the magnitude of the flash-lag effect significantly increased with decreasing predictability, we conclude that the observer's attentional set can modulate the differential latencies determining this perceptual effect. The flash-lag phenomenon can thus be conceived as arising from differential visual latencies which are determined not only by the physical attributes of the stimulus, such as its luminance or eccentricity, but also by attentional mechanisms influencing the delays involved in the perceptual processing.  相似文献   

11.
Perceived position depends on many factors, including motion present in a visual scene. Convincing evidence shows that high-level motion perception--which is driven by top-down processes such as attentional tracking or inferred motion--can influence the perceived position of an object. Is high-level motion sufficient to influence perceived position, and is attention to or awareness of motion direction necessary to displace objects' perceived positions? Consistent with previous reports, the first experiment revealed that the perception of motion, even when no physical motion was present, was sufficient to shift perceived position. A second experiment showed that when subjects were unable to identify the direction of a physically present motion stimulus, the apparent locations of other objects were still influenced. Thus, motion influences perceived position by at least two distinct processes. The first involves a passive, preattentive mechanism that does not depend on perceptual awareness; the second, a top-down process that depends on the perceptual awareness of motion direction. Each contributes to perceived position, but independently of the other.  相似文献   

12.
Previous research (e.g., Wong & Weisstein, 1984a, 1985) has shown that flickering stimuli appear to be more distant than nonflickering stimuli at the same physical distance. Given this relation between flicker and perceived depth, inappropriate constancy scaling theories predict that flickering stimuli should be perceived as larger than nonflickering ones. In contrast, links between flicker and motion perception suggest that flickering stimuli should be perceived as smaller than nonflickering ones. Two experiments tested these contrasting predictions. In Experiment 1, 22 subjects compared flickering and nonflickering vertical lines and reported that the flickering stimulus appeared significantly smaller than the nonflickering one. In Experiment 2, 21 subjects reported that the stimuli used in Experiment 1 produced depth effects similar to those reported in previous experiments: flickering stimuli were perceived as more distant than nonflickering ones. The observed effect of flicker on perceived size was contrary to predictions from inappropriate constancy scaling theory, but consistent with views that motion and flicker are processed by the same pathway.  相似文献   

13.
14.
Understanding how multiple constraints contribute to the emergence of coordinated behavior has been the topic of considerable debate in cognitive sciences. The present experiment addressed the issue of the effects of visual motion structures (iso- and non-isodirectionality) on the stability of hand-foot coordination patterns. Visuo-motor transformations--decorrelating the perceived movement direction from the actually generated direction--were applied to both in-phase and anti-phase patterns. Two mutually exclusive hypotheses--the "visual grouping hypothesis" and the "incongruency hypothesis"--were tested. The results indicated that both conditions of transformed visual feedback destabilized the actual performed coordination patterns. Thus, despite the existence of common underlying principles that govern both the perceived motion pattern and the generation of hand-foot coordination patterns, it appeared that perceptual grouping principles were not exploited to monitor the production of coordination. These results strongly suggest that the congruency between the performed pattern and the perceived visual feedback is the primary factor determining the (in)stability of hand-foot coordination patterns.  相似文献   

15.
Visual stimuli remain visible for some time after their physical offset (visible persistence). Visible persistence has been hypothesized to play an important role in determining the pattern of correspondence matching in the Ternus apparent-motion display. In this display, one or more elements reappears in overlapping locations at different times, whereas another element appears alternately to the right or the left of these elements. Usually either the elements are perceived to move coherently as a group (group motion), or one element may be perceived to hop over one or more other elements (element motion). According to the visible-persistence account of the perceptual organization of the Ternus display, element motion is seen when the temporal gap between elements in overlapping locations is small enough to be bridged by visible persistence; if it is not, group motion is seen. We conducted four experiments to test this visible-persistence account. In Experiments 1 and 2, a form correspondence cue (line length) was introduced to bias the visual system toward the element-motion interpretation, while visible persistence was either reduced or eliminated. The element-motion percept dominated despite the elimination of visible persistence. In Experiments 3 and 4, we found that Ternus elements presented without interruption, and thus presumably persisting over time, can be perceived in group motion. Together, the results indicate that visible persistence is neither necessary nor sufficient to account for the pattern of correspondence matches in the Ternus display.  相似文献   

16.
When a moving target vanishes abruptly, participants judge its final position as being ahead of its actual final position, in the direction of motion (representational momentum; Freyd & Finke, 1984). In the present study, we presented illusory motion and examined whether or not forward displacement was affected by the perceived direction and speed of the target. Experiments 1A and 1B showed that an illusory direction of movement of a target was perceived, and Experiment 2 showed that an illusory speed of a moving target was observed. However, neither the direction nor the magnitude of forward displacement was affected by these illusions. Therefore, it was suggested that the mechanism underlying forward displacement (or some extrapolation processing) uses different motion signals than does the perceptual mechanism.  相似文献   

17.
We argue that 4 fundamental gestalt phenomena in perception apply to the control of motor action. First, a motor gestalt, like a perceptual gestalt, is holistic in the sense that it is processed as a single unit. This notion is consistent with reaction time results indicating that all gestures for a brief unit of action must be programmed prior to initiation of any part of the movement. Additional reaction time results related to initiation of longer responses are consistent with processing in terms of a sequence of indivisible motor gestalts. Some actions (e.g., many involving coordination of the hands) can be carried out effectively only if represented as a unitary gestalt. Second, a perceptual gestalt is independent of specific sensory receptors, as evidenced by perceptual constancy. In a similar manner a motor gestalt can be represented independently of specific muscular effectors, thereby allowing motor constancy. Third, just as a perceptual pattern (e.g., a Necker cube) is exclusively structured into only 1 of its possible configurations at any moment in time, processing prior to action is limited to 1 motor gestalt. Fourth, grouping in apparent motion leads to stream segregation in visual and auditory perception; this segregation is present in motor action and is dependent on the temporal rate. We discuss congruence of gestalt phenomena across perception and motor action (a) in relation to a unitary perceptual-motor code, (b) with respect to differences in the role of awareness, and (c) in conjunction with separate neural pathways for conscious perception and motor control.  相似文献   

18.
The ability of observers to perceive three-dimensional (3-D) distances or lengths along intrinsically curved surfaces was investigated in three experiments. Three physically curved surfaces were used: convex and/or concave hemispheres (Experiments 1 and 3) and a hyperbolic paraboloid (Experiment 2). The first two experiments employed a visual length-matching task, but in the final experiment the observers estimated the surface lengths motorically by varying the separation between their two index fingers. In general, the observers' judgments of surface length in both tasks (perceptual vs. motoric matching) were very precise but were not necessarily accurate. Large individual differences (overestimation, underestimation, etc.) in the perception of length occurred. There were also significant effects of viewing distance, type of surface, and orientation of the spatial intervals on the observers' judgments of surface length. The individual differences and failures of perceptual constancy that were obtained indicate that there is no single relationship between physical and perceived distances on 3-D surfaces that is consistent across observers.  相似文献   

19.
The apparent relative motion of physically stationary objects that frequently occurs as the head is moved in a frontoparallel plane is almost always in the direction expected from the projection into the distal world of the relative motion of the images on the eye. It is hypothesized that this is the result of the perceptual underestimation of the depth between the objects. If a perceptual overestimation of the depth were produced, it was predicted that the apparent relative motion would be in a direction opposite to that expected from the projection of the retinal motions. This prediction was tested using the binocular disparity cue to produce perceptual overestimation of the slant (depth) of a luminous line. In this case, perceived slant was the indicator of perceived depth, and perceived rotation concomitant with the motion of the head was the indicator of perceived relative motion. The results support the prediction and also provide some support for a theoretically derived equation specifying the relation between these two perceptual variables.  相似文献   

20.
Recent research on perceptual grouping is described with particular emphasis on identifying the level(s) at which grouping factors operate. Contrary to the classical view of grouping as an early, two-dimensional, image-based process, recent experimental results show that it is strongly influenced by phenomena related to perceptual constancy, such as binocular depth perception, lightness constancy, amodal completion, and illusory contours. These findings imply that at least some grouping processes operate at the level of phenomenal perception rather than at the level of the retinal image. Preliminary evidence is reported showing that grouping can affect perceptual constancy, suggesting that grouping processes must also operate at an early, preconstancy level. If so, grouping may be a ubiquitous, ongoing aspect of visual organization that occurs for each level of representation rather than as a single stage that can be definitively localized relative to other perceptual processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号