首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There is a growing body of evidence that the hippocampus is critical for context-dependent memory retrieval. In the present study, we used Pavlovian fear conditioning in rats to examine the role of the dorsal hippocampus (DH) in the context-specific expression of fear memory after extinction (i.e., renewal). Pre-training electrolytic lesions of the DH blunted the expression of conditional freezing to an auditory conditional stimulus (CS), but did not affect the acquisition of extinction to that CS. In contrast, DH lesions impaired the context-specific expression of extinction, eliminating the renewal of fear normally observed to a CS presented outside of the extinction context. Post-extinction DH lesions also eliminated the context dependence of fear extinction. These results are consistent with those using pharmacological inactivation of the DH and suggest that the DH is required for using contextual stimuli to regulate the expression of fear to a Pavlovian CS after extinction.  相似文献   

2.
We have previously reported that the reconsolidation and extinction of hippocampal-dependent contextual fear memory can be initiated by a single context conditioned stimulus (CS) presentation of either short or long duration, and that both processes require protein synthesis in this brain region. Furthermore, reconsolidation depends on Zif268 activity in this region. Here we show that by infusing a recombinant brain-derived neurotrophic factor (rBDNF) directly into the brain of rats, that high levels of mature BDNF in the hippocampus at retrieval constrain the extinction of the fear memory after prolonged memory recall. We also show after a short CS exposure that reconsolidation was impaired using antisense oligonucleotides targeting Zif268, and that, similarly, reductions in conditioned behavior were observed after prolonged CS presentation when extinction is constrained by high levels of BDNF. This is direct evidence that in the mammalian brain extinction proceeds exclusively after prolonged CS exposure. In addition, that BDNF activity in the hippocampus contributes to a molecular switch for the extinction of hippocampal-dependent memory.  相似文献   

3.
Pavlovian fear conditioning is a robust and enduring form of emotional learning that provides an ideal model system for studying contextual regulation of memory retrieval. After extinction the expression of fear conditional responses (CRs) is context-specific: A conditional stimulus (CS) elicits greater conditional responding outside compared with inside the extinction context. Dorsal hippocampal inactivation with muscimol attenuates context-specific CR expression. We have previously shown that CS-elicited spike firing in the lateral nucleus of the amygdala is context-specific after extinction. The present study examines whether dorsal hippocampal inactivation with muscimol disrupts context-specific firing in the lateral amygdala. We conditioned rats to two separate auditory CSs and then extinguished each CS in separate and distinct contexts. Thereafter, single-unit activity and conditional freezing were tested to one CS in both extinction contexts after saline or muscimol infusion into the dorsal hippocampus. After saline infusion, rats froze more to the CS when it was presented outside of its extinction context, but froze equally in both contexts after muscimol infusion. In parallel with the behavior, lateral nucleus neurons exhibited context-dependent firing to extinguished CSs, and hippocampal inactivation disrupted this activity pattern. These data reveal a novel role for the hippocampus in regulating the context-specific firing of lateral amygdala neurons after fear memory extinction.  相似文献   

4.
Recent studies demonstrate that context-specific memory retrieval after extinction requires the hippocampus. However, the contribution of hippocampal subfields to the context-dependent expression of extinction is not known. In the present experiments, we examined the roles of areas CA1 and CA3 of the dorsal hippocampus in the context specificity of extinction. After pairing an auditory conditional stimulus (CS) with an aversive footshock (unconditional stimulus or US), rats received extinction sessions in which the CS was presented without the US. In Experiment 1, pretraining neurotoxic lesions in either CA1 or CA3 eliminated the context dependence of extinguished fear. In Experiment 2, lesions of CA1 or CA3 were made after extinction training. In this case, only CA1 lesions impaired the context dependence of extinction. Collectively, these results reveal that both hippocampal areas CA1 and CA3 contribute to the acquisition of context-dependent extinction, but that only area CA1 is required for contextual memory retrieval.  相似文献   

5.
Extinction of classically conditioned fear, like its acquisition, is active learning, but little is known about its molecular mechanisms. We recently reported that temporal massing of conditional stimulus (CS) presentations improves extinction memory acquisition, and suggested that temporal spacing was less effective because individual CS exposures trigger two opposing processes: (1) fear extinction, which is favored by CS massing, and (2) fear incubation (increase), which is favored by spacing. We here report the effects of manipulating the adrenergic system during massed or spaced CS presentations in fear-conditioned mice. We administered yohimbine (5 mg/kg), an alpha(2)-receptor antagonist, or propranolol (10 mg/kg), a beta-receptor antagonist, systemically prior to CS presentation sessions and recorded both short- and long-term changes in conditional freezing. Yohimbine treatment facilitated extinction of both cue and context fear with massed protocols. When given before spaced CS presentations, propranolol led to a persistent incubation of cue fear, whereas yohimbine led to persistent extinction, compared with vehicle-treated animals, which showed no change in fear. These results suggest that norepinephrine positively modulates the formation of fear extinction memories in mice. They also provide clear evidence that spaced CS presentations trigger both fear-reducing (extinction) and fear-increasing (incubation) mechanisms.  相似文献   

6.
Both genetic and pharmacological studies demonstrated that contextual fear conditioning is critically regulated by cyclic AMP-dependent protein kinase (PKA). Since PKA is a broad range protein kinase, a mechanism for confining its activity is required. It has been shown that intracellular spatial compartmentalization of PKA signaling is mediated by A-kinase anchoring proteins (AKAPs). Here, we investigated the role of PKA anchoring to AKAPs in different stages of the memory process (acquisition, consolidation, retrieval and extinction) using contextual fear conditioning, a hippocampus-dependent learning task. Mice were injected intracerebroventricularly or intrahippocampally with the membrane permeable PKA anchoring disrupting peptides St-Ht31 or St-superAKAP-IS at different time points during the memory process. Blocking PKA anchoring to AKAPs resulted in an impairment of fear memory consolidation. Moreover, disrupted PKA anchoring promoted contextual fear extinction in the mouse hippocampus. We conclude that the temporal and spatial compartmentalization of hippocampal PKA signaling pathways, as achieved by anchoring of PKA to AKAPs, is specifically instrumental in long-term contextual fear memory consolidation and extinction, but not in acquisition and retrieval.  相似文献   

7.
If the unconditioned stimulus (US) is presented independently of the conditioned stimulus (CS) following extinction, the conditioned response may be reinstated to the CS. Three experiments are reported that suggest that reinstatement is mediated by conditioning to contextual stimuli that are present during both US presentation and testing. Shocks presented to rats following the extinction of conditioned suppression reliably reinstated suppression to the CS, but only when they were presented in the context in which testing was later to occur. Reinstatement was also reversed by extinguishing fear to the context through nonreinforced exposure to the context between shock presentation and testing. Reinstatement was obtained in these experiments in spite of procedures that have been used in the past to minimize the influence of context conditioning. Moreover, fear of the context was never detected directly by depressed bar-press rates in the absence of the CS. The results do not support the hypothesis that reinstatement results from an increment in the strength of a memory of the US that has been weakened during extinction. Problems inherent in controlling and detecting levels of context conditioning that may influence behavior toward nominal CSs are discussed.  相似文献   

8.
Extinction of conditioned fear in animals is the explicit model of behavior therapy for human anxiety disorders, including panic disorder, obsessive-compulsive disorder, and post-traumatic stress disorder. Based on previous data indicating that fear extinction in rats is blocked by quinpirole, an agonist of dopamine D2 receptors, we hypothesized that blockade of D2 receptors might facilitate extinction in mice, while agonists should block extinction, as they do in rats. One day after fear conditioning mice with three pairings of a white noise conditional stimulus (CS) with moderate footshock, we injected the D2 antagonist, sulpiride, the D2 agonist, quinpirole, or vehicle, just before repeated CS presentations to generate extinction. We assayed fear by measuring behavioral freezing during extinction presentations and then drug-free during CS presentations 1 d later. We found that sulpiride injections before extinction training facilitated extinction memory 24 h later, while quinpirole partially blocked extinction memory compared with vehicle-injected controls. Notably, sulpiride treatment yielded significant extinction after spaced CS presentations, which yield no extinction at all in vehicle-treated mice. These findings suggest that dopamine D2-mediated signaling contributes physiological inhibition of extinction, and that D2 antagonists may be useful adjuncts to behavior therapy of human anxiety disorders.  相似文献   

9.
After extinction of conditioned fear, memory for the conditioning and extinction experiences becomes context dependent. Fear is suppressed in the extinction context, but renews in other contexts. This study characterizes the neural circuitry underlying the context-dependent retrieval of extinguished fear memories using c-Fos immunohistochemistry. After fear conditioning and extinction to an auditory conditioned stimulus (CS), rats were presented with the extinguished CS in either the extinction context or a second context, and then sacrificed. Presentation of the CS in the extinction context yielded low levels of conditioned freezing and induced c-Fos expression in the infralimbic division of the medial prefrontal cortex, the intercalated nuclei of the amygdala, and the dentate gyrus (DG). In contrast, presentation of the CS outside of the extinction context yielded high levels of conditioned freezing and induced c-Fos expression in the prelimbic division of the medial prefrontal cortex, the lateral and basolateral nuclei of the amygdala, and the medial division of the central nucleus of the amygdala. Hippocampal areas CA1 and CA3 exhibited c-Fos expression when the CS was presented in either context. These data suggest that the context specificity of extinction is mediated by prefrontal modulation of amygdala activity, and that the hippocampus has a fundamental role in contextual memory retrieval.Considerable interest has emerged in recent years in the neural mechanisms underlying the associative extinction of learned fear (Maren and Quirk 2004; Myers et al. 2006; Quirk and Mueller 2008). Notably, extinction is a useful model for important aspects of exposure-based therapies for the treatment of human anxiety disorders such as panic disorder and post-traumatic stress disorder (PTSD) (Bouton et al. 2001, 2006). During extinction, a conditioned stimulus (CS) is repeatedly presented in the absence of the unconditioned stimulus (US), a procedure that greatly reduces the magnitude and probability of the conditioned response (CR). After the extinction of fear, there is substantial evidence that extinction does not erase the original fear memory, but results in a transient inhibition of fear. For example, extinguished fear responses return after the mere passage of time (i.e., spontaneous recovery) or after a change in context (i.e., renewal) (Bouton et al. 2006; Ji and Maren 2007). In other words, extinguished fear is context specific. The return of fear after extinction is a considerable challenge for maintaining long-lasting fear suppression after exposure-based therapies (Rodriguez et al. 1999; Hermans et al. 2006; Effting and Kindt 2007; Quirk and Mueller 2008).In the last several years, considerable progress has been made in understanding the neural mechanisms underlying the context specificity of fear extinction. For example, lesions or inactivation of the hippocampus prevent the renewal of fear when an extinguished CS is presented outside of the extinction context (Corcoran and Maren 2001, 2004; Corcoran et al. 2005; Ji and Maren 2005, 2008; Hobin et al. 2006). In addition, neurons in the basolateral complex of the amygdala exhibit context-specific spike firing to extinguished CSs (Hobin et al. 2003; Herry et al. 2008), and this requires hippocampal input (Maren and Hobin 2007). Indeed, amygdala neurons that fire more to extinguished CSs outside of the extinction context are monosynaptically excited by hippocampal stimulation (Herry et al. 2008). In contrast, neurons that responded preferentially to extinguished CSs in the extinction context receive synaptic input from the medial prefrontal cortex (Herry et al. 2008).The prevalent theory of the interactions between the prefrontal cortex, hippocampus, and amygdala that lead to regulation of fear by context assumes that when animals experience an extinguished CS in the extinction context, the hippocampus drives prefrontal cortex inhibition of the amygdala to suppress fear (Hobin et al. 2003; Maren and Quirk 2004; Maren 2005). When animals encounter an extinguished CS outside of the extinction context, the hippocampus is posited to inhibit the prefrontal cortex and thereby promote amygdala activity required to renew fear. The hippocampus may also drive fear renewal through its direct projections to the basolateral amygdala (Herry et al. 2008). Although this model accounts for much of the extant literature on the context specificity of extinction, it is not known whether the nodes of this hypothesized neural network are coactive during the retrieval of fear and extinction memories. As a first step in addressing this issue, we used ex vivo c-Fos immunohistochemistry (e.g., Knapska et al. 2007) to generate a functional map of the neural circuits involved in the contextual retrieval of fear memory after extinction. Our results reveal reciprocal activity in prefrontal-amygdala circuits involved in extinction and renewal and implicate the hippocampus in hierarchical control of contextual memory retrieval within these circuits.  相似文献   

10.
Learning in a contextual fear conditioning task involves forming a context representation and associating it with a shock. The dorsal hippocampus (DH) is implicated in representing the context, but whether it also has a role in associating the context and shock is unclear. To address this issue, male Wistar rats were trained on the task by a two-phase training paradigm, in which rats learned the context representation on day 1 and then reactivated it to associate with the shock on day 2; conditioned freezing was tested on day 3. Lidocaine was infused into the DH at various times in each of the two training sessions. Results showed that intra-DH infusion of lidocaine shortly before or after the context training session on day 1 impaired conditioned freezing, attesting to the DH involvement in context representation. Intra-DH infusion of lidocaine shortly before or after the shock training session on day 2 also impaired conditioned freezing. This deficit was reproduced by infusing lidocaine or APV (alpha-amino-5-phosphonovaleric acid) into the DH after activation of the context memory but before shock administration. The deficit was not due to drug-induced state-dependency, decreased shock sensitivity or reconsolidation failure of the contextual memory. These results suggest that in contextual fear conditioning integrity of the DH is required for memory processing of not only context representation but also context-shock association.  相似文献   

11.
Retrograde amnesia following disruptions of hippocampal function is often temporally graded, with recent memories being more impaired. Evidence supports the existence of one or more neocortical long-term memory storage/retrieval site(s). Neurotoxic lesions of the medial prefrontal cortex (mPFC) or the dorsal hippocampus (DH) were made 1 day or 200 days following trace fear conditioning. Recently encoded trace fear memories were most disrupted by DH lesions, while remotely encoded trace and contextual memories were most disrupted by mPFC lesions. These data strongly support the consolidation theory of hippocampus function and implicate the mPFC as a site of long-term memory storage/retrieval.  相似文献   

12.
《Behavior Therapy》2018,49(6):1008-1019
Extinction learning, which creates new safety associations, is thought to be the mechanism underlying exposure therapy, commonly used for the treatment of anxiety disorders and posttraumatic stress disorder. The relative strength and availability for retrieval of both the fear and safety memories determine the response in a given situation. While the fear memory is often context-independent and may easily generalize, extinction memory is highly context-specific. “Renewal” of the extinguished fear memory might thus occur following a shift in context. The aim of the current work was to create an enhanced and generalized extinction memory to a discrete stimulus using stress exposure before extinction learning, thereby preventing renewal. In our contextual fear conditioning paradigm, 40 healthy men acquired (Day 1), retrieved and extinguished (Day 2) the fear memories, with no differences between the stress and the control group. A significant difference between the groups emerged in the renewal test (Day 3). A renewal effect was seen in the control group (N = 20), confirming the context-dependency of the extinction memory. In contrast, the stress group (N = 20) showed no renewal effect. Fear reduction was generalized to the acquisition context as well, suggesting that stress rendered the extinction memory more context-independent. These results are in line with previous studies that showed contextualization disruption as a result of pre-learning stress, mediated by the rapid effects of glucocorticoids on the hippocampus. Our findings support research investigating the use of glucocorticoids or stress induction in exposure therapy and suggest the right timing of administration in order to optimize their effects.  相似文献   

13.
Contextual fear conditioning involves forming a context representation and associating it to a shock, both of which involved the dorsal hippocampus (DH) according to our recent findings. This study tested further whether the two processes may rely on different neurotransmitter systems in the DH. Male Wistar rats with cannula implanted into the DH were subjected to a two-phase training paradigm of contextual fear conditioning to separate context learning from context-shock association in two consecutive days. Immediately after each training phase, different groups of rats received bilateral intra-DH infusion of the GABA(A) agonist muscimol, 5HT(1A) agonist 8-OH-DPAT, NMDA antagonist APV or muscarinic antagonist scopolamine at various doses. On the third day, freezing behavior was tested in the conditioning context. Results showed that intra-DH infusion of muscimol impaired conditioned freezing only if it was given after context learning. In contrast, scopolamine impaired conditioned freezing only if it was given after context-shock training. Posttraining infusion of 8-OH-DPAT or APV had no effect on conditioned freezing when the drug was given at either phase. These results showed double dissociation for the hippocampal GABAergic and cholinergic systems in memory consolidation of contextual fear conditioning: forming context memory required deactivation of the GABA(A) receptors, while forming context-shock memory involved activation of the muscarinic receptors.  相似文献   

14.
Studies on human and animals shed light on the unique hippocampus contributions to relational memory. However, the particular role of each hippocampal subregion in memory processing is still not clear. Hippocampal computational models and theories have emphasized a unique function in memory for each hippocampal subregion, with the CA3 area acting as an autoassociative memory network and the CA1 area as a critical output structure. In order to understand the respective roles of the CA3- and CA1-hippocampal areas in the formation of contextual memory, we studied the effects of the reversible inactivation by lidocaine of the CA3 or CA1 areas of the dorsal hippocampus on acquisition, consolidation, and retrieval of a contextual fear conditioning. Whereas infusions of lidocaine never impaired elementary tone conditioning, their effects on contextual conditioning provided interesting clues about the role of these two hippocampal regions. They demonstrated first that the CA3 area is necessary for the rapid elaboration of a unified representation of the context. Secondly, they suggested that the CA1 area is rather involved in the consolidation process of contextual memory. Third, they showed that CA1 or CA3 inactivation during retention test has no effect on contextual fear retrieval when a recognition memory procedure is used. In conclusion, our findings point as evidence that CA1 and CA3 subregions of the dorsal hippocampus play important and different roles in the acquisition and consolidation of contextual fear memory, whereas they are not required for context recognition.  相似文献   

15.
Rats were shocked in a context and then exposed to that context in the absence of shock. Shorter intervals between these extinction trials produced more long-term freezing than did longer ones, and shorter intervals between the final extinction trial and test produced more freezing than did longer ones. A short interval between a context extinction trial and test with an extinguished conditioned stimulus (CS) produced more freezing than did a longer one, and a short interval between a nonreinforced context exposure and an extinguished CS reinstated freezing when the CS was tested 24 hr later. The results suggest that recent fear acts to favor subsequent retrieval of the memory formed at conditioning rather than extinction and to render the retrieved memory more salient.  相似文献   

16.
The nucleus basalis magnocellularis (NBM) is known to be involved in the memorization of several conditioned responses. To investigate the role of the NBM in fear conditioning memorization, this neural site was subjected to fully reversible tetrodotoxin (TTX) inactivation during consolidation in adult male Wistar rats that had undergone fear training to acoustic conditioned stimulus (CS) and context. TTX was stereotaxically administered to different groups of rats at increasing intervals after the acquisition session. Memory was assessed as the conditioned freezing duration measured during retention testing, always performed 72 and 96 h after TTX administration. In this way, there was no interference with normal NBM function during either acquisition or retrieval phases, allowing any amnesic effect to be due only to consolidation disruption. The results show that for contextual fear response memory consolidation, NBM functional integrity is necessary up to 24 h post-acquisition. On the other hand, NBM functional integrity was shown to be necessary for memory consolidation of the acoustic CS fear response only immediately after acquisition and not 24-h post-acquisition. The present findings help to elucidate the role of the NBM in memory consolidation and better define the neural circuits involved in fear memories.  相似文献   

17.
Prior work with the crab's contextual memory model showed that CS-US conditioned animals undergoing an unreinforced CS presentation would either reconsolidate or extinguish the CS-US memory, depending on the length of the reexposure to the CS. Either memory process is only triggered once the CS is terminated. Based on these results, the following questions are raised. First, when is extinction memory acquired, if not along extinction training, and how long does it take? Second, can acquisition and consolidation of extinction memory be pharmacologically dissected? Here we address these questions performing three series of experiments: a first one aimed to study systematically the relationship between extinction and increasing periods of unreinforced CS presentations, a second one to determine the time boundaries of the extinction memory acquisition, and the third one to assay the requirement for protein synthesis and NMDA-like receptors of acquisition and consolidation of extinction memory. Our results confirm that it is CS-offset and not the mere retrieval (CS-onset) that triggers acquisition of extinction memory and that it is completed in less than 45 sec after CS-offset. In addition, protein synthesis is required for consolidation but not for acquisition of this memory and, conversely, NMDA-like receptor activity is required for its acquisition but not for its consolidation. Finally, we offer an interpretative scheme of our results and we discuss to what extent it could apply to multitrial extinction.  相似文献   

18.
Disruptions of fear extinction-related potentiation of synaptic efficacy in the connection between the hippocampus (HPC) and the medial prefrontal cortex (mPFC) have been shown to impair the recall of extinction memory. This study was undertaken to examine if chronic mild stress (CMS), which is known to alter induction of HPC–mPFC long-term potentiation, would also interfere with both extinction-related HPC–mPFC potentiation and extinction memory. Following fear conditioning (5 tone-shock pairings), rats were submitted to fear extinction (20 tone-alone presentations), which produced an increase in the amplitude of HPC–mPFC field potentials. HPC low-frequency stimulation (LFS), applied immediately after training, suppressed these changes and induced fear return during the retention test (5 tone-alone presentations). CMS, delivered before fear conditioning, did not interfere with fear extinction but blocked the development of extinction-related potentiation in the HPC–mPFC pathway and impaired the recall of extinction. These findings suggest that HPC LFS may provoke metaplastic changes in HPC outputs that may mimic alterations associated with a history of chronic stress.  相似文献   

19.
In previous experiments on contextual memory, we proposed that the unreinforced re-exposure to the learning context (conditioned stimulus, CS) acts as a switch guiding the memory course toward reconsolidation or extinction, depending on reminder duration. This proposal implies that the system computes the total exposure time to the context, from CS onset to CS offset, and therefore, that the reminder presentation must be terminated for the switching mechanism to become operative. Here we investigated to what extent this requirement is necessary, and we explored the relation between diverse phases in the reconsolidation and extinction processes. We used the contextual memory model of the crab Chasmagnathus which involves an association between the learning context (CS) and a visual danger stimulus (unconditioned stimulus, US). Administration of cycloheximide was used to test the lability state of memory at different time points. The results show that two factors, no-reinforcement during the reminder (i.e., CS re-exposure) and CS offset are the necessary conditions for both processes to occur. Regardless of the reminder duration, memory retrieved by unreinforced CS re-exposure emerges intact and consolidated when tested before CS offset, suggesting that neither reconsolidation nor extinction is concomitant with CS re-exposure. Either process could only be triggered once the definitive mismatch between CS and US is confirmed by CS termination without the expected reinforcement.  相似文献   

20.
BackgroundThe pharmacology of traumatic memory extinction has not been fully characterized despite its potential as a therapeutic target for established, acquired anxiety disorders, including post-traumatic stress disorder (PTSD). Here we examine the role of endogenous glucocorticoids in traumatic memory extinction.MethodsMale C57BL/6J mice were injected with corticosterone (10 mg/kg, i.p.) or metyrapone (50 mg/kg, s.c.) during re-activation of a contextual fear memory, and compared to vehicle groups (N = 10–12 per group). To ensure that metyrapone was blocking corticosterone synthesis, we measured corticosterone levels following re-activation of a fear memory in metyrapone- and vehicle-treated animals.ResultsCorticosterone administration following extinction trials caused a long-lasting inhibition of the original fear memory trace. In contrast, blockade of corticosteroid synthesis with metyrapone prior to extinction trials enhanced retrieval and prevented extinction of context-dependent fear responses in mice. Further behavioral analysis suggested that the metyrapone enhancement of retrieval and prevention of extinction were not due to non-specific alterations in locomotor or anxiety-like behavior. In addition, the inhibition of extinction by metyrapone was rescued by exogenous administration of corticosterone following extinction trials. Finally, we confirmed that the rise in corticosterone during re-activation of a contextual fear memory was blocked by metyrapone.ConclusionsWe demonstrate that extinction of a classical contextual fear memory is dependent on endogenous glucocorticoid synthesis during re-activation of a fear memory. Our data suggest that decreased glucocorticoids during fear memory re-activation may contribute to the inability to extinguish a fear memory, thus contributing to one of the core symptoms of PTSD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号