首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of ketamine on tunnel maze and water maze performance in the rat   总被引:1,自引:0,他引:1  
The NMDA receptor, which has been implicated in memory formation, is noncompetitively blocked by ketamine. The present study examines the effect of ketamine (0, 3, 6, 12, and 25 mg/kg body wt; ip) on tunnel maze and water maze performance in Wistar rats. In the hexagonal tunnel maze (HTM) high doses of ketamine (12 and 25 mg/kg) decreased locomotor activity. Moreover, ketamine induced perimeter walking (6, 12, and 25 mg/kg) and attenuated exploratory efficiency (25 mg/kg). When the HTM was converted into a modified six-arm radial maze, ketamine impaired short-term but not long-term memory. In the Morris water maze, rats injected with ketamine (12 and 25 mg/kg) acquired a spatial navigation task more slowly than controls. When the escape platform was removed, the drug-treated rats did not preferentially search for it in the area where the platform had been during the acquisition phase. However, when the escape platform was visible, no differences in the performance of ketamine-treated and control rats could be found. In summary, ketamine seems to attenuate some but not all forms of learning in the tunnel maze and it impairs the acquisition of a spatial navigation task.  相似文献   

2.
Anterograde amnesia, a common consequence of transient cerebral ischaemia, has been attributed to cell loss in the hippocampal CA1 subfield. However, variable, widespread damage outside hippocampal CA1 can also occur following ischaemia. We compared the functional consequences of ischaemia and ibotenate acid CA1 lesions on 2 spatial memory tasks (water maze 'place' and 'matching-to-position') to address the possibility that extra-CA1 loss contributes to ischaemia-induced memory deficits in the rat. During place task acquisition, ischaemic rats showed deficits on more measures than ibotenic rats, and during a 1 min probe trial, only ischaemic rats were impaired. On the matching-to-position task, ibotenic rats showed greater impairment than ischaemic rats in terms of one-trial learning, whereas ischaemic rats were more impaired after Trial 2. Ischaemia and ibotenic acid lesions resulted in equivalent CA1 loss, but silver impregnation revealed additional extra-CA1 cell loss in ischaemic rats. Together with the greater behavioural deficits of ischaemic rats, these data indicate a role for extra-CA1 cell loss in ischaemia-induced memory impairments in both animals and humans.  相似文献   

3.
In order to assess effects of global ischemia in tasks of spatial learning and working memory, male Wistar rats were subjected to four vessel occlusion (4 VO) for periods of 5, 10, and 20 min and compared with sham-operated controls over four test phases, from 6 to 54 weeks after surgery. Rats were assessed on acquisition in the water maze, a task that is sensitive to ischemic impairments, before testing in Skinner box and water maze working memory tasks, which both require the short-term storage of information, but make different demands on spatial information processing. Phases 1 and 3 assessed spatial learning in a standard water maze procedure (12 and 10 training days, 2 trials/day with a 10-min intertrial interval: ITI). Phase 2 involved training and testing in delayed non-matching-to-position task in the Skinner box, with delays of 2–10 s between the information and choice stages. Phase 4 examined working memory in a water maze delayed matching-to-position task with 4 trials/day, an ITI of 30 s, and a novel platform position on each day. Ischemic rats showed duration-related impairments in water maze acquisition and working memory, but not in the less spatially demanding Skinner box task. Since water maze acquisition deficits were seen both before and after testing in the Skinner box the lack of effect cannot be attributed to time or to prior training. Ischemic deficits were more marked in Phase 3 than in Phase 1 of acquisition, suggesting that impairment may be progressive. Histological assessment showed that cell loss was largely confined to the hippocampal CA1 field and was linearly related to duration of occlusion. At the maximal level of loss (5.7 mm before the interaural line) the 20-min group showed 90% loss, the 10-min group 60% loss, and the 5-min group, which did not differ from controls, less than 10% loss. Only the 20-min group showed significant damage beyond the CA1 field, ranging from 30–40% loss in the CA3 field to 5% loss in one striatal area. No cortical damage was seen. The extent of CA1 cell loss correlated modestly with water maze acquisition (Phase 3) and working memory scores, but not with trials to criterion in the Skinner box task. There were significant correlations between different measures both within and between water maze tasks, but not Skinner box tasks, suggesting that the two types of procedure engaged different cognitive processes. The results indicate that the intrahippocampal damage induced by 4 VO impaired tasks which required processing of allocentric spatial information, but did not impair the storage of limited spatial information in working memory.  相似文献   

4.
Memory formation requires cAMP signaling; thus, this cascade has been of great interest in the search for cognitive enhancers. Given that medications are administered long-term, we determined the effects of chronically increasing cAMP synthesis in the brain by expressing a constitutively active isoform of the G-protein subunit Galphas (Galphas*) in postnatal forebrain neurons of mice. Previously, we showed that Galphas* mice exhibit increased adenylyl cyclase activity but decreased cAMP levels in cortex and hippocampus due to a PKA-dependent increase in total cAMP phosphodiesterase (PDE) activity. Here, we extend previous findings by determining if Galphas* mice show increased activity of specific PDE families that are regulated by PKA, if Galphas* mice show PKA-dependent deficits in fear memory, and if these memory deficits are associated with PKA-dependent alterations in neuronal activity as mapped by Arc mRNA expression. Consistent with previous findings, we show here that Galphas* mice exhibit a significant compensatory increase in cAMP PDE1 activity and a trend toward increased cAMP PDE4 activity. Further, inhibiting the presumably elevated PKA activity in Galphas* mice fully rescues short- and long-term memory deficits in a fear-conditioning task, while extending the training session from one to four CS-US pairings partially rescues these deficits. Mapping of Arc mRNA levels suggests these PKA-dependent memory deficits may be related to decreased neuronal activity specifically within the cortex. Galphas* mice show decreased Arc mRNA expression in CA1, orbital cortex, and cortical regions surrounding the hippocampus; however, only the deficits in cortical regions surrounding the hippocampus are PKA dependent. Our results imply that chronically stimulating targets upstream of cAMP may detrimentally affect cognition.  相似文献   

5.
6.
Scene Construction Theory suggests similar neural mechanisms for visual imagery and autobiographical memory, supporting the seeming scientific consensus that a loss of visual imagery affects autobiographical memory. Based on the Dual Coding Theory and the Reverse Hierarchy Model, we also assumed influences of visual imagery on recent visual memory and even verbal memory, although little evidence has been provided so far. Thus, in a sample of 67 congenital aphantasics (= persons without mental imagery) and 32 demographically matched controls, it was investigated whether deficits in visual imagery are associated with deficits in visual as well as verbal short-term and long-term memory. The memory tasks were theoretically selected based on task difficulty, retrieval condition, and subcategories of stimuli, as previous null findings were attributed to insensitive tasks that were solvable by aphantasics by means of non-visual alternative strategies. Significant group differences were found in all memory components, with aphantasics performing worse than non-aphantasics. Therefore, evidence was obtained for the influence of visual imagery on all memory components beyond autobiographical memory.  相似文献   

7.
In many organisms, memory after training can be separated into a number of processes. We now report that separable memory processes are also initiated by a training procedure affecting Aplysia feeding behavior, a model system for examining the neural mechanisms underlying the regulation of a complex behavior. Four distinct memory process were identified: (1) a very short-term memory that declines within 15 min, (2) a short-term memory that persists for 0.5–1.0 hr, (3) an intermediate-term memory, observed 4 hr after training, and (4) a long-term memory that is seen only after a 12- to 24-hr delay. The four memory processes can be distinguished by the different training procedures that are required to elicit them. A single 5-min training session is sufficient to elicit the very short-term memory. However, a longer training session that continues until the animal stops responding to food is needed to elicit short-term memory. Intermediate-term memory is observed only after a spaced training procedure (three 5-min training sessions separated by 30-min intervals). A single 5-min training session that does not cause either short-term or intermediate-term memory is sufficient to induce long-term memory, indicating that short- and long-term memory are independent, parallel processes. Short- and long-term memory can also be separated by the effects of a post-training experience. Long-term, but not short-term, memory can be attenuated by cooling animals immediately after training. Cooling before the training does not affect either the training or the subsequent short- or long-term memory.  相似文献   

8.
Working memory in children with reading disabilities   总被引:4,自引:0,他引:4  
This study investigated associations between working memory (measured by complex memory tasks) and both reading and mathematics abilities, as well as the possible mediating factors of fluid intelligence, verbal abilities, short-term memory (STM), and phonological awareness, in a sample of 46 6- to 11-year-olds with reading disabilities. As a whole, the sample was characterized by deficits in complex memory and visuospatial STM and by low IQ scores; language, phonological STM, and phonological awareness abilities fell in the low average range. Severity of reading difficulties within the sample was significantly associated with complex memory, language, and phonological awareness abilities, whereas poor mathematics abilities were linked with complex memory, phonological STM, and phonological awareness scores. These findings suggest that working memory skills indexed by complex memory tasks represent an important constraint on the acquisition of skill and knowledge in reading and mathematics. Possible mechanisms for the contribution of working memory to learning, and the implications for educational practice, are considered.  相似文献   

9.
The hallmark of amnesia is poor explicit long-term memory along with normal short-term memory. It is often stated that information encountered by amnesic patients is forgotten within 1 minute of presentation. However, previous work has not distinguished between forgetting as a function of time versus the interfering material occupying that time. We show that there is a marked benefit of reduced interference in amnesic patients with mild cognitive impairment (MCI), a condition that is characterised by anterograde amnesia in the absence of other neuropsychological deficits and carries an increased risk for Alzheimer's disease. The result suggests that long-term memory is encoded in these patients to a greater extent than had been realised but that their memory is highly vulnerable to interference.  相似文献   

10.
The authors model the neural mechanisms underlying spatial cognition, integrating neuronal systems and behavioral data, and address the relationships between long-term memory, short-term memory, and imagery, and between egocentric and allocentric and visual and ideothetic representations. Long-term spatial memory is modeled as attractor dynamics within medial-temporal allocentric representations, and short-term memory is modeled as egocentric parietal representations driven by perception, retrieval, and imagery and modulated by directed attention. Both encoding and retrieval/imagery require translation between egocentric and allocentric representations, which are mediated by posterior parietal and retrosplenial areas and the use of head direction representations in Papez's circuit. Thus, the hippocampus effectively indexes information by real or imagined location, whereas Papez's circuit translates to imagery or from perception according to the direction of view. Modulation of this translation by motor efference allows spatial updating of representations, whereas prefrontal simulated motor efference allows mental exploration. The alternating temporal-parietal flows of information are organized by the theta rhythm. Simulations demonstrate the retrieval and updating of familiar spatial scenes, hemispatial neglect in memory, and the effects on hippocampal place cell firing of lesioned head direction representations and of conflicting visual and ideothetic inputs.  相似文献   

11.
12.
Congenital amusia is a disorder that affects the perception and production of music. While amusia has been associated with deficits in pitch discrimination, several reports suggest that memory deficits also play a role. The present study investigated short-term memory span for pitch-based and verbal information in 14 individuals with amusia and matched controls. Analogous adaptive-tracking procedures were used to generate tone and digit spans using stimuli that exceeded psychophysically measured pitch perception thresholds. Individuals with amusia had significantly smaller tone spans, whereas their digits spans were a similar size to those of controls. An automated operation span task was used to determine working memory capacity. Working memory deficits were seen in only a small subgroup of individuals with amusia. These findings support the existence of a pitch-specific component within short-term memory and suggest that congenital amusia is more than a disorder of fine-grained pitch discrimination.  相似文献   

13.
We tested whether memory deficits in temporal lobe epilepsy (TLE) are better described by a single- or dual-store memory model. To this aim, we analyzed the influence of TLE and proactive interference (PI) on immediate and 24-h long-term recency effects during face recognition in 16 healthy participants and 18 right and 21 left non-surgical TLE patients. PI in healthy participants or TLE erased the long-term recency effect, but left the immediate recency effect unaffected. Although the immediate recency effect was still visible in right TLE patients, the number of detected recency items during immediate recognition was decreased in right TLE compared to left TLE. Right TLE was also related to decreased detection of pre-recency items during delayed recognition compared to left TLE, and decreased detection of pre-recency items during immediate recognition under PI. The results show that the temporal lobes are necessary for the long-term recency effect, but not for the immediate recency effect, and thus speak for a dissociation of short- and long-term memory for faces. Right TLE is related to more severe long-term memory deficits than left TLE and is also related to additional short-term memory deficits for faces.  相似文献   

14.
Melcher D 《Perception》2010,39(8):1011-1025
In contrast to our rich sensory experience with complex scenes in everyday life, the capacity of visual working memory is thought to be quite limited. Here our memory has been examined for the details of naturalistic scenes as a function of display duration, emotional valence of the scene, and delay before test. Individual differences in working memory and long-term memory for pictorial scenes were examined in experiment 1. The accumulation of memory for emotional scenes and the retention of these details in long-term memory were investigated in experiment 2. Although there were large individual differences in performance, memory for scene details generally exceeded the traditional working memory limit within a few seconds. Information about positive scenes was learned most quickly, while negative scenes showed the worst memory for details. The overall pattern of results was consistent with the idea that both short-term and long-term representations are mixed together in a medium-term 'online' memory for scenes.  相似文献   

15.
Prior research has shown that attention-deficit/hyperactivity disorder (ADHD) and epilepsy are frequently comorbid and that both disorders are associated with various attention and memory problems. Nonetheless, limited research has been conducted comparing the two disorders in one sample to determine unique versus shared deficits. Hence, we investigated differences in working memory (WM) and short-term and delayed recall between children with ADHD, focal epilepsy of mixed foci, comorbid ADHD/epilepsy and controls. Participants were compared on the Core subtests and the Picture Locations subtest of the Children’s Memory Scale (CMS). Results indicated that children with ADHD displayed intact verbal WM and long-term memory (LTM), as well as intact performance on most aspects of short-term memory (STM). They performed worse than controls on Numbers Forward and Picture Locations, suggesting problems with focused attention and simple span for visual-spatial material. Conversely, children with epilepsy displayed poor focused attention and STM regardless of the modality assessed, which affected encoding into LTM. The only loss over time was found for passages (Stories). WM was intact. Children with comorbid ADHD/epilepsy displayed focused attention and STM/LTM problems consistent with both disorders, having the lowest scores across the four groups. Hence, focused attention and visual-spatial span appear to be affected in both disorders, whereas additional STM/encoding problems are specific to epilepsy. Children with comorbid ADHD/epilepsy have deficits consistent with both disorders, with slight additive effects. This study suggests that attention and memory testing should be a regular part of the evaluation of children with epilepsy and ADHD.  相似文献   

16.
Chi MT 《Memory & cognition》1976,4(5):559-572
This paper evaluates the assertion that short-term memory (STM) capacity increases with age. Initially an analysis is made of the STM system in terms of its parameters and control processes. No evidence was found that can suggest conclusively that either the capacity or the rate of information loss from STM varies with age. On the other hand, substantial evidence exists to show that the processing strategies used by adults are unavailable or deficient in children. Furthermore, considerable differences in the contents and complexity of the long-term memory (LTM) knowledge base (semantic and recognition networks can produce grossly different STM performance between age groups. The second half of this paper reviews three STM-related paradigms-memory span, serial probed recall, and recognition under limited exposure-that have consistently shown performance deficits in children. These deficits are explained in terms of the lack of proper control processes (or processing strategies), as well as an impoverished LTM knowledge base rather than a limitation in STM capacity.  相似文献   

17.
Evidence has accumulated that the entorhinal cortex (EC) is involved in memory operations underlying formation of a long-term memory. Because entorhinal-lesioned rats are impaired for long delays in delayed matching and non-matching to sample tasks, it has been proposed that EC contributes to the maintenance of information in short-term memory. In the present study, we asked whether such a time-limited role applies also when learning complex spatial information in a novel environment. We therefore examined the effects of EC lesions on habituation in an object exploration task in which a delay of either 4 min or 10 min is imposed between successive sessions. EC-lesioned rats exhibited a deficit in habituation at 10 min but not 4 min delays. Following habituation, reactions to spatial change (object configuration) and non-spatial change (novel object) were also examined. EC-lesioned rats were impaired in detecting the spatial change but were able to detect a non-spatial change, irrespective of the delay. Overall, the results suggest that EC is involved in maintaining a large amount of novel, multidimensional information in short-term memory therefore enabling formation of long-term memory. Switching to a novelty detection mode would then allow the animal to rapidly adapt to environmental changes. In this mode, EC would preferentially process spatial information rather than non-spatial information.  相似文献   

18.
Despite considerable experimental work on Alzheimer's disease (AD), the underlying cognitive mechanisms as well as the precise localization of neuropathological changes critical for memory loss remains undefined. A review of the neuropsychological literature on long-term memory deficits in AD patients suggests that AD patients display (a) a pervasive deficit of explicit memory, (b) a partial deficiency of implicit memory for verbal and visuoperceptual material (as measured by repetition priming procedures), and (c) a substantial sparing of implicit memory for visuomotor skills. The explicit memory loss is likely a result of encoding as well as consolidation difficulties. A faulty lexical-semantic knowledge structure appears responsible for deficient repetition priming effects. Since neuropathological changes diffusely affect the brain of AD patients, establishing a clear relationship between localization of cerebral lesions and memory deficits is particularly difficult. Nevertheless, data suggest that extensive involvement of the hippocampal-amygdala complex plays a major role in explicit memory loss. Damage to associative cortical areas likely is involved in repetition priming deficits. The relative integrity of primary motor and sensory cortical areas and of the basal ganglia likely subsume, by contrast, the normal learning of visuomotor skills.  相似文献   

19.
20.
To test the three main hypotheses of the human amnesic syndrome (encoding, consolidation, retrieval), we designed an original protocol for memory assessment under Amytal that included, in addition to a retrograde memory measure, both short-term and long-term anterograde memory measures. Twenty epileptic patients with SEEG-confirmed unilateral temporal lobe foci were given right and left injections on successive days. Only the long-term memory measure for material presented under Amytal was significantly related to the presence of a temporal contralateral epileptogenic focus, even if it was assessed when the hemisphere had completely recovered from the effect of Amytal. Short-term memory deficits were observed equally often after injections ipsilateral and contralateral to the epileptogenic focus, and no retrograde amnesia was observed. These results are consistent with the consolidation hypothesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号