首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent findings indicate that a post-training injection of glucose enhances memory storage, suggesting that release of glucose into plasma may mediate the effects of epinephrine and perhaps other treatments on memory. The present experiment examined the effects of handling, inhibitory (passive) avoidance training, epinephrine and glucose injections on plasma glucose levels in Sprague-Dawley rats. Handling produced a small, but significant, transient increase in plasma glucose above basal levels. Saline injections caused a similar increase in circulating glucose levels. Inhibitory avoidance training with high footshock (2.0 mA, 2.0 s) resulted in significant increases in plasma glucose levels above those of low (0.5 mA, 0.75 s) and unshocked animals suggesting that glucose release is responsive to inhibitory avoidance training. Subcutaneous injections of epinephrine (0.01-1.0 mg/kg), or glucose (10-1000 mg/kg) significantly elevated glucose levels above those of saline-injected animals in a dose-dependent manner. Memory facilitating doses of epinephrine and glucose resulted in increases in plasma glucose levels similar to those seen in rats trained with high footshock. Higher doses of epinephrine and glucose resulted in further increases in circulating glucose, to levels significantly greater than those of memory facilitating doses. These results suggest that memory modulation, both endogenous and in response to epinephrine injections, may be mediated in part by circulating glucose levels. Thus, the findings of these experiments support the view that circulating glucose levels regulate the efficacy of neural memory storage processes.  相似文献   

2.
These experiments examined the effects of post-training epinephrine (Epi) on retention of an aversively motivated discrimination task. Male CFW mice were trained to escape from footshock by entering one of two alleys of a Y-maze. On a 24-h retention test (six trials) the correct alley was reversed. The findings of Experiment 1 indicate that errors on the discrimination reversal varied directly with number of trials (criterion of 0, 3, or 6 successive correct choices) on the original training. These findings indicate that errors on discrimination reversal training provide a sensitive index of retention of the original training. In Experiment 2, mice were trained to a criterion of three successive correct choices and were given post-training injections of saline or Epi (0.1, 0.3, or 1.0 mg/kg ip). On a 24-h discrimination reversal test mice given the low doses of Epi made more errors than did saline controls while mice given the high dose made fewer errors. In Experiment 3, mice trained as in Exp 2 received post-training saline or Epi (0.3 or 1.0 mg/kg) and were tested for retention either 1 week or 1 month later. At each retention interval, performance was comparable to that found with a 24-h retention interval. The findings provide additional evidence that post-training Epi produces long-lasting dose-dependent modulating effects on memory storage.  相似文献   

3.
Several peripherally acting hormones and drugs are known to modulate memory storage processes, yet the mechanisms which permit these agents to influence memory is not well understood since they do not freely enter the brain. The nucleus of the solitary tract (NTS) is one brainstem structure which receives important neural input from the periphery. Therefore, the objective of this experiment was to determine whether the NTS is involved in modulating processes contributing to memory formation. Male Sprague-Dawley rats were trained in a one-trial inhibitory avoidance task (0.35 mA, 0.5 s footshock). Immediately or 2 h after training microinjections of 2% lidocaine hydrochloride (20 mg/kg) or a phosphate buffer solution were administered bilaterally into the NTS. Two other groups received microinjections of lidocaine into the fourth ventricle or cerebellum. On retention tests given 48 h after training the latency to reenter the dark compartment of the apparatus was recorded. The retention latencies of rats receiving bilateral microinjections of 0.5 microliter of lidocaine hydrochloride into the NTS were significantly shorter than those of animals given injections of a buffer solution (0.5 microliter), delayed injections of buffer or lidocaine, or control injections of lidocaine into the cerebellum or fourth ventricle. These findings suggest that memory storage processes are impaired by reversible inactivation of the NTS after training. The implications of these findings in terms of a possible role of the NTS in modulating brain processes involved in memory storage are discussed.  相似文献   

4.
Rats were trained and tested in a step-down inhibitory avoidance task (0.3-mA footshock). Training-test interval was 6 h. In Experiment 1, animals received, 1 h before training, an ip injection of vehicle or diazepam (2.0 mg/kg) and, 30 s after training and/or 30 min prior to testing, ip saline, epinephrine (6.25 micrograms/kg or 125.0 micrograms/kg), naloxone (0.5 mg/kg), or beta-endorphin (1 micrograms/kg). In the vehicle-pretreated animals, post-training epinephrine (6.25 micrograms/kg) and naloxone enhanced, and post-training beta-endorphin and epinephrine (125.0 micrograms/kg) reduced, retention test performance; and pretest beta-endorphin and epinephrine (125.0 micrograms/kg) reversed the latter effect and enhanced retention on their own. Diazepam lowered memory scores on its own and prevented all other drug effects with the exception of post-training facilitation by epinephrine (6.25 micrograms/kg). In previous papers it was shown that post-training facilitation by epinephrine is due to an influence on storage processes, whereas all the other drug effects described above result from the post-training establishment of state dependency to either beta-endorphin or epinephrine, and therefore to a process involving further acquisition and storage. The present findings suggest that diazepam selectively hindered the acquisition and/or storage processes involved in state dependency. This conclusion is strengthened by the findings from Experiment 2, which showed, using a classic 2 x 2 design, that diazepam itself did not induce state dependency but, rather, depressed acquisition and/or storage of the avoidance task.  相似文献   

5.
Glucose modulation of memory storage processing   总被引:9,自引:0,他引:9  
Epinephrine, derived from the adrenal medulla, enhances memory storage for several forms of learning. One physiological action of this hormone is to liberate hepatic glucose stores. This experiment tested the possibility that glucose could itself enhance memory. Rats were water deprived, pretrained to drink, pretrained to drink in the behavioral apparatus, and then trained in a one-trial inhibitory (passive) avoidance task. Immediately after the training footshock, the animals each received an injection of glucose (1.0-500 mg/kg). When tested for retention 24 h later, the animals which received 10 or 100 mg/kg doses of glucose exhibited enhanced retention performance; higher and lower doses had no significant effect on the memory tests. Also, glucose injections (100 mg/kg) delayed by 1 h after training had no effect on the retention tests. These findings suggest that the increase in plasma glucose levels subsequent to epinephrine injection may contribute to the effects of epinephrine on memory. In addition, the results suggest that peripheral glucose levels may exert important influences on memory storage.  相似文献   

6.
The results of previous studies indicate that the extent of a transient decline in brain norepinephrine (NE) levels shortly after training and administration of any of several memory modulating treatments is correlated with later retention performance. The present experiment assessed such changes after one-trial inhibitory (passive) avoidance training and, in addition, measured concentration changes in 3-methoxy-4-hydroxyphenylglycol (MHPG), the major metabolite of brain NE, as well as dopamine (DA) and epinephrine (EPI) levels. The results indicate that the decreases in brain NE after footshock are accompanied by an increase in MHPG, thus providing additional evidence that brain NE is released after training. DA levels were unchanged after training; brainstem EPI levels increased after the training footshock, but forebrain EPI levels were unchanged. A second experiment examined brain catecholamine levels in animals which received post-training electrical stimulation of the amygdala. The findings of this experiment indicate that the amygdala damage which accompanies electrode implantation apparently results in a chronic change in whole brain NE levels and metabolism. After amygdala, NE concentrations in both brainstem and forebrain samples were reduced by 20% and MHPG was increased by 22-34%. Furthermore, NE levels were not responsive to training in implanted animals. Thus, brain NE levels after training were not predictive of retention performance in amygdala-implanted or -stimulated animals. However, the significance of such findings for understanding the possible role of central NE in memory storage is complicated by the severe modification of the dynamics of brain aminergic systems in animals bearing amygdala electrodes.  相似文献   

7.
Disruption of synaptic activity of a number of cerebral structures (e.g., neostriatum, amygdala, and thalamus) produces marked deficits in retention of instrumentally conditioned behaviors. When animals are given a relatively high number of training trials or high intensities of footshock during learning, however, such disruption is considerably less effective. Since there is a close anatomical and functional relationship between the neostriatum and the substantia nigra, it was of interest to determine whether enhanced training with a high level of footshock would prevent the reported amnesic state induced by injections of GABA antagonists into the latter structure. Rats were trained in a one-trial inhibitory task, using 0.2 or 0.4 mA, and then injected with microgram quantities of picrotoxin or bicuculline into the substantia nigra and posterior region of the zona incerta; retention was measured 24 h later. Only those groups that had been injected into the nigra and trained with 0.2 mA showed amnesia. These results support the hypotheses that (a) the normal activity of a set of structures is essential for the development of memory consolidation and (b) after an enhanced learning experience these structures may participate in memory consolidation, but are not necessary for the occurrence of this process.  相似文献   

8.
Post-training introparitoneal (ip) administration of ACTH1-24 (25 ng/rat) or epinephrine HCl (625 ng/rat) facilitated retention of a step-down inhibitory avoidance task acquired using a small start platform (5-cm high, 25 X 7 cm) and a low intensity training footshock (0.3 mA, 60 Hz), and caused retrograde amnesia for a similar task acquired using a large platform (5-cm high, 25 X 25 cm) and a high intensity training footshock (0.8 mA, 60 Hz). The post-training intracerebroventricular (icv) administration of 5, 25, or 125 ng/rat of ACTH or of 5, 25, 125, 625, or 1250 ng/rat of epinephrine had no effect on retention of either task. These findings suggest that memory modulation by ACTH and epinephrine is mediated by reflexes initiated at peripheral receptors that affect brain activity during the post-training period.  相似文献   

9.
We have studied the effect of training conditions on hippocampal protein synthesis-dependent processes in consolidation of the inhibitory avoidance task. Adult male Wistar rats were trained and tested in a step-down inhibitory avoidance task (0.4 mA foot shock, 24 hr training–test interval). Fifteen minutes before or 0, 3, or 6 hr after training, animals received a 0.8-μl intrahippocampal infusion of the protein-synthesis inhibitor anisomycin (80 μg) or vehicle (PBS, pH 7.4). The infusion of anisomycin impaired retention test performance in animals injected 15 min before and 3 hr after the training session, but not at 0 or 6 h post-training. Pretraining with a low foot shock intensity (0.2 mA) 24 hr before training, prevented the amnestic effect of anisomycin injected at 15 min before or 3 hr after training. However, simple pre-exposure to the inhibitory avoidance apparatus did not alter the amestic effects of anisomycin. The results suggest that hippocampal protein synthesis is critical in two periods, around the time of, and 3 hr after training. A prior weak training session, however, which does not itself alter step-down latencies, is sufficient to prevent the amnestic effect of anisomycin, suggesting that even if not behaviorally detectable, weak training must be sufficient to produce some lasting cellular expression of the experience.  相似文献   

10.
Rats were trained in a one-trial passive avoidance task and then were submitted to electroconvulsive shock (ECS) or to sham ECS. Twenty-four hours later they were tested for retention, with the door opened either immediately or 30 sec after the beginning of the test. Rats initially forced to avoid for 30 sec continued to avoid for the entire test, but the others had the usual low step-through latencies seen with ECS-treated animals. Activity measures for those animals stepping through differentiated groups having received footshock from those not having footshock and ECS. A retest 5--10 min later showed "recovery" in the amnestic animals and continued avoidance behavior for those that avoided on the first test. Results are taken as evidence that ECS effects are not on memory storage but on the capacity of the animal to organize information effectively and quickly in order to produce an adaptive response.  相似文献   

11.
Scopolamine effects on memory retention in mice: a model of dementia?   总被引:4,自引:0,他引:4  
Scopolamine-treated normal young human subjects exhibit memory dysfunctions analogous to those observed in demented patients. The dysfunctions are reversible by physostigmine but not by d-amphetamine which suggests that the memory impairment is specifically related to reduced cholinergic transmission caused by scopolamine. Scopolamine-induced amnesia has been proposed as a model for dementia where reduced cholinergic function is the suspected cause. We report seven experiments in young adult mice which examine scopolamine's effects on memory retention and whether its amnestic effects are specifically blocked by cholinergic agonists or cholinomimetics. Young adult mice were trained to avoid footshock in a T maze and their retention tested 1 week after training. Pretraining subcutaneous injection of scopolamine improved retention scores of "undertrained" mice at a dose of 0.01 mg/kg but impaired at a dose of 0.1 mg/kg. Post-training injection showed no effect at 0.01 mg/kg, enhanced retention scores at 0.1 mg/kg, and impaired at 1.0 mg/kg. The impairment by 1.0 mg/kg was blocked by injection 45 min post-training of each of two cholinergic drugs but was also counteracted by six drugs which act upon five other neural systems (catecholamine, serotonin, glycine, GABA, and hormonal). When scopolamine was injected 40 min pretraining, and each of eight drugs was injected immediately after training, the amnestic effect of scopolamine was only partially counteracted. This suggests that scopolamine impaired acquisition, in addition to some impairment of memory processing. This was confirmed by a direct study of acquisition rates of the avoidance response; 0.1 mg/kg of scopolamine impaired acquisition. The overall results indicate that pretraining administration of scopolamine impairs learning and to some degree memory processing. Counteracting scopolamine-induced amnesia, by either pretraining or post-training drug administration, is not specific to the cholinergic system.  相似文献   

12.
The aim of these experiments was to determine whether impaired retention performance in aversively motivated tasks, induced by blockade of amygdala AMPA receptors, is due to influences on mechanisms underlying memory retrieval or to other influences on performance. Rats received either footshock escape training (1 or 10 trials), or no foot shock, in a two-compartment straight alley and bilateral intra-amygdala infusions of the AMPA receptor antagonist CNQX (0.5 μg) were subsequently administered prior to inhibitory avoidance retention testing 8 days later. The CNQX impaired, but did not block, inhibitory avoidance retention performance as indicated by the initial latencies to enter the shock compartment. The animals were then retained in the alley until they remained in the starting compartment for 100 consecutive s and entries into the shock compartment were recorded as errors. In both the controls and CNQX-treated groups, increases in amount of original training resulted in fewer errors, indicating memory for the escape training. Furthermore, regardless of the amount of original training (i.e., 0, 1, or 10 trials), CNQX-treated groups made more errors. Other experiments examined intra-amygdala CNQX effects on reactivity to footshock, locomotor activity, and anxiety. CNQX decreased reactivity to footshock, blocked shock-induced decreases in locomotor activity, and had an anxiolytic effect in an elevated plus maze comparable to that induced by midazolam (0.5 μg). These findings suggest that intra-amygdala infusions of CNQX prior to retention testing affect inhibitory avoidance retention performance following aversive training by altering locomotor activity, reducing sensitivity to footshock, and reducing anxiety. The implications of these findings for hypotheses concerning amygdala function in aversively motivated learning and memory is discussed.  相似文献   

13.
Previous studies using aversive training tasks have reported that retention is enhanced by post-training administration of epinephrine. This study investigated the effects of post-training administration of epinephrine on retention of an appetitive task. The results indicate that epinephrine can enhance retention performance in an appetitive task of both rats and mice. Pretraining injections of propranolol and phenoxybenzamine, alpha- and beta-adrenergic receptor antagonists, attenuate the memory-enhancing effects of epinephrine. These results are consistent with the view that release of peripheral epinephrine may regulate storage of new information and may mediate memory modulation produced by a variety of treatments.  相似文献   

14.
This study investigated glucocorticoid-dopaminergic interactions in modulating retrieval of long-term memory in an inhibitory avoidance task. Young adult male rats were trained in one trial inhibitory avoidance task (0.5 mA, 3 s footshock). On the retention test given 48 h after training, the latency to re-enter the dark compartment of the apparatus was recorded. Systemically administered corticosterone (1 or 3 mg/kg) given to rats 30 min before retention testing impaired their memory retrieval, but the lower dose was more effective than the higher one. Administration of the dopamine (DA) D2 receptor antagonist sulpiride (6 or 20 mg/kg) 30 min before corticosterone attenuated the impairing effects of corticosterone (1 mg/kg) on memory retrieval. Administration of the DA D1 receptor antagonist SCH23390 (25 or 50 microg/kg) had no effect on corticosterone-induced impairment of memory retrieval. Further, applied doses of sulpiride or SCH23390 alone were ineffective in modulating memory retrieval. These findings provide evidence for the existence of an interaction between glucocorticoids and DA D2 receptor on memory retrieval process.  相似文献   

15.
Immediate post-training intraperitoneal injections of the GABA antagonist bicuculline (0.25 or 0.5 mg/kg) or of the GABA agonist muscimol (1.0 or 2.0 mg/kg) improved and impaired, respectively, retention of CD1 mice tested 24 h after training in a one-trial inhibitory avoidance task. Administration of bicuculline or muscimol prior to the retention test did not modify retention latencies of mice that had received either saline or the same drug immediately after training. These findings indicate that the effects of post-training administration of bicuculline and muscimol on retention are not state dependent and, thus, argue against a general state-dependency interpretation of the effects of post-training treatments affecting retention. The findings are consistent with previous evidence indicating that GABAergic drugs affect retention through influences on memory storage processes.  相似文献   

16.
These experiments investigated the role of the alpha(2)-adrenoceptors of the basolateral nucleus of the amygdala (BLA) in modulating the retention of inhibitory avoidance (IA). In Experiment 1, male Sprague Dawley rats implanted with bilateral cannulae in the BLA received microinfusions of a selective alpha(2)-adrenoceptor antagonist idazoxan 20 min either before or immediately after training. Retention was tested 48 h later. Idazoxan induced a dose-dependent enhancement of retention performance and was more effective when administered post-training. In Experiment 2, animals received pre- or post-training intra-BLA infusions of a selective alpha(2)-adrenoceptor agonist UK 14,304. The agonist induced a dose-dependent impairment of retention performance and, as with the antagonist treatments, post-training infusions were more effective. These results provide additional evidence that consolidation of inhibitory avoidance memory depends critically on prolonged activation of the noradrenergic system in the BLA and indicate that this modulatory influence is mediated, in part, by pre-synaptic alpha(2)-adrenoceptors.  相似文献   

17.
Passive avoidance behavior of mice is improved when mice are injected with ethanol immediately after footshock training. Further study has shown that avoidance can be affected by ethanol injections given within 1 h, but not at 90 or 180 min, after training. The present study was conducted to investigate the possibility that events which occur in the homecage during this sensitive period may influence the effect of ethanol on subsequent avoidance. Male Swiss-Webster mice were housed either singly in a novel environment for 90 min or returned to their (group) homecage following one-trial, step-through, passive avoidance training (0.1 mA footshock) and intraperitoneal injection of 3.0 g/kg ethanol (15% v/v) or saline. As in previous studies, when ethanol-treated mice were returned to their homecage, avoidance was significantly increased at 24 h compared to the behavior of saline-treated mice. However, when mice were isolated in the novel environment for 90 min immediately following treatment, the memory facilitating effects of ethanol were not observed. The avoidance behavior of mice injected with saline was the same regardless of their post-training environment. Also, the number of mice (6 or 10) housed per homecage did not significantly influence the effects of ethanol or post-training environment on avoidance. These findings indicate that environmental factors may interact with the effects of ethanol to modify avoidance behavior. The possible influence of variables such as aggression, thermoregulation, and behavioral arousal on the effects of ethanol in this paradigm are discussed.  相似文献   

18.
Rats were trained in a step-down inhibitory avoidance task using a 0.2-mA footshock and tested 6 h later. Exposure to a session of extinction (animals placed on the box where they had been trained and left to explore it freely for 100.0 s without footshocks) or to a series of 10 tones presented in another box, in the dark, 2 h after training, hindered retention test performance. The immediate post-training ip administration of epinephrine (5.0 micrograms/kg), ACTH-(1-24) (0.2 microgram/kg), or lysine-vasopressin (10.0 micrograms/kg) facilitated retention test performance and cancelled the effect of extinction, but not the retroactive interference caused by exposure to the tones. These results support the concept that post-training facilitation induced by the hormones is due to a strengthening of the memory trace left by the avoidance task, whereas the retroactive interference caused by the tones occurs independently from that process and is more likely due to the incorporation of postevent information.  相似文献   

19.
Extensive evidence indicates that the basolateral complex of the amygdala (BLA) mediates hormonal and neurotransmitter effects on the consolidation of emotionally influenced memory and that such modulatory influences involve noradrenergic activation of the BLA. As the BLA also expresses a high density of receptors for orphanin FQ/nociceptin (OFQ/N), an opioid-like peptide with anxiolytic and amnestic properties, the present experiments investigated whether the BLA is involved in mediating OFQ/N effects on memory consolidation and whether such effects require noradrenergic activity. OFQ/N (0.01-100 pmol in 0.2 microL) administered bilaterally into the BLA of male Sprague-Dawley rats immediately after aversively motivated inhibitory avoidance training induced dose-dependent impairment on a 48-h retention trial. The beta(1)-adrenoceptor antagonist atenolol (2.0 nmol) administered concurrently into the BLA potentiated the dose-response effects of OFQ/N. In contrast, immediate post-training infusions of the peptidergic OFQ/N receptor antagonist [Nphe(1)]nociceptin(1-13)NH(2) (1-100 pmol in 0.2 microL) into the BLA enhanced 48-h retention of inhibitory avoidance training, an effect that was blocked by coadministration of atenolol. Delayed infusions of OFQ/N or [Nphe(1)]nociceptin(1-13)NH(2) into the BLA administered either 6 or 3 h after training, respectively, or immediate post-training infusions of OFQ/N into the adjacent central amygdala did not significantly alter retention performance. These findings indicate that endogenously released OFQ/N interacts with noradrenergic activity within the BLA in modulating memory consolidation.  相似文献   

20.
The present experiments examined the role of the central cholinergic system in the memory impairment induced by post-training administration of a nitric oxide synthase (NOS) inhibitor in mice. Male Swiss mice received a one-trial inhibitory avoidance training (0.8 mA, 50 Hz, 1-s footshock) followed immediately by an ip injection of the NOS inhibitor -NG-nitroarginine methyl ester ( -NAME; 100 mg/kg). Retention (cut-off time, 300 s) was tested 48 h after training. The administration of -NAME results in memory impairment for the inhibitory avoidance task. The effects of -NAME (100 mg/kg, ip) on retention were reversed in a dose-related manner by the centrally acting anticholinesterase physostigmine (35, 70, or 150 μg/kg, sc) administered 30 min after the NOS inhibitor. Further, -NAME (100 mg/kg, ip)-induced memory impairment was completely antagonized by the centrally acting muscarinic cholinergic agonist oxotremorine (OTM; 25, 50, or 100 μg/kg, sc) when given 30 min after -NAME. The peripherally acting anticholinesterase neostigmine (150 μg/kg, sc) did not modify the memory-impairing effects of -NAME. These findings suggest that the memory impairment following post-training administration of a NOS inhibitor is mediated, at least in part, by a reduction of the activity of central muscarinic cholinergic mechanisms and are consistent with our previous view that nitric oxide may be involved in post-training neural processes underlying the storage of newly acquired information.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号