首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 15 毫秒
1.
2.
3.
We define a tableau calculus for the logic of only knowing and knowing at most ON, which is an extension of Levesque's logic of only knowing O. The method is based on the possible-world semantics of the logic ON, and can be considered as an extension of known tableau calculi for modal logic K45. From the technical viewpoint, the main features of such an extension are the explicit representation of "unreachable" worlds in the tableau, and an additional branch closure condition implementing the property that each world must be either reachable or unreachable. The calculus allows for establishing the computational complexity of reasoning about only knowing and knowing at most. Moreover, we prove that the method matches the worst-case complexity lower bound of the satisfiability problem for both ON and O. With respect to [22], in which the tableau calculus was originally presented, in this paper we both provide a formal proof of soundness and completeness of the calculus, and prove the complexity results for the logic ON.  相似文献   

4.
5.
Different reasoning systems have different strengths and weaknesses, and often it is useful to combine these systems to gain as much as possible from their strengths and retain as little as possible from their weaknesses. Of particular interest is the integration of first-order and higher-order techniques. First-order reasoning systems, on the one hand, have reached considerable strength in some niches, but in many areas of mathematics they still cannot reliably solve relatively simple problems, for example, when reasoning about sets, relations, or functions. Higher-order reasoning systems, on the other hand, can solve problems of this kind automatically. But the complexity inherent in their calculi prevents them from solving a whole range of problems. However, while many problems cannot be solved by any one system alone, they can be solved by a combination of these systems.We present a general agent-based methodology for integrating different reasoning systems. It provides a generic integration framework which facilitates the cooperation between diverse reasoners, but can also be refined to enable more efficient, specialist integrations. We empirically evaluate its usefulness, effectiveness and efficiency by case studies involving the integration of first-order and higher-order automated theorem provers, computer algebra systems, and model generators.  相似文献   

6.
Hilbert and Bernays avoided overspecification of Hilbert's ε-operator. They axiomatized only what was relevant for their proof-theoretic investigations. Semantically, this left the ε-operator underspecified. After briefly reviewing the literature on semantics of Hilbert's epsilon operator, we propose a new semantics with the following features: We avoid overspecification (such as right-uniqueness), but admit indefinite choice, committed choice, and classical logics. Moreover, our semantics for the ε simplifies proof search and is natural in the sense that it mirrors some cases of referential interpretation of indefinite articles in natural language.  相似文献   

7.
Partial functions can be easily represented in set theory as certain sets of ordered pairs. However, classical set theory provides no special machinery for reasoning about partial functions. For instance, there is no direct way of handling the application of a function to an argument outside its domain as in partial logic. There is also no utilization of lambda-notation and sorts or types as in type theory. This paper introduces a version of von-Neumann-Bernays-Gödel set theory for reasoning about sets, proper classes, and partial functions represented as classes of ordered pairs. The underlying logic of the system is a partial first-order logic, so class-valued terms may be nondenoting. Functions can be specified using lambda-notation, and reasoning about the application of functions to arguments is facilitated using sorts similar to those employed in the logic of the IMPS Interactive Mathematical Proof System. The set theory is intended to serve as a foundation for mechanized mathematics systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号