首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pursuit eye movements give rise to retinal motion. To judge stimulus motion relative to the head, the visual system must correct for the eye movement by using an extraretinal, eye-velocity signal. Such correction is important in a variety of motion estimation tasks including judgments of object motion relative to the head and judgments of self-motion direction from optic flow. The Filehne illusion (where a stationary object appears to move opposite to the pursuit) results from a mismatch between retinal and extraretinal speed estimates. A mismatch in timing could also exist. Speed and timing errors were investigated using sinusoidal pursuit eye movements. We describe a new illusion--the slalom illusion--in which the perceived direction of self-motion oscillates left and right when the eyes move sinusoidally. A linear model is presented that determines the gain ratio and phase difference of extraretinal and retinal signals accompanying the Filehne and slalom illusions. The speed mismatch and timing differences were measured in the Filehne and self-motion situations using a motion-nulling procedure. Timing errors were very small for the Filehne and slalom illusions. However, the ratios of extraretinal to retinal gain were consistently less than 1, so both illusions are the consequence of a mismatch between estimates of retinal and extraretinal speed. The relevance of the results for recovering the direction of self-motion during pursuit eye movements is discussed.  相似文献   

2.
Freeman TC  Sumnall JH 《Perception》2002,31(5):603-615
Abstract. Observers can recover motion with respect to the head during an eye movement by comparing signals encoding retinal motion and the velocity of pursuit. Evidently there is a mismatch between these signals because perceived head-centred motion is not always veridical. One example is the Filehne illusion, in which a stationary object appears to move in the opposite direction to pursuit. Like the motion aftereffect, the phenomenal experience of the Filehne illusion is one in which the stimulus moves but does not seem to go anywhere. This raises problems when measuring the illusion by motion nulling because the more traditional technique confounds perceived motion with changes in perceived position. We devised a new nulling technique using global-motion stimuli that degraded familiar position cues but preserved cues to motion. Stimuli consisted of random-dot patterns comprising signal and noise dots that moved at the same retinal 'base' speed. Noise moved in random directions. In an eye-stationary speed-matching experiment we found noise slowed perceived retinal speed as 'coherence strength' (ie percentage of signal) was reduced. The effect occurred over the two-octave range of base speeds studied and well above direction threshold. When the same stimuli were combined with pursuit, observers were able to null the Filehne illusion by adjusting coherence. A power law relating coherence to retinal base speed fit the data well with a negative exponent. Eye-movement recordings showed that pursuit was quite accurate. We then tested the hypothesis that the stimuli found at the null-points appeared to move at the same retinal speed. Two observers supported the hypothesis, a third partially, and a fourth showed a small linear trend. In addition, the retinal speed found by the traditional Filehne technique was similar to the matches obtained with the global-motion stimuli. The results provide support for the idea that speed is the critical cue in head-centred motion perception.  相似文献   

3.
Accurate and efficient control of self-motion is an important requirement for our daily behavior. Visual feedback about self-motion is provided by optic flow. Optic flow can be used to estimate the direction of self-motion (‘heading’) rapidly and efficiently. Analysis of oculomotor behavior reveals that eye movements usually accompany self-motion. Such eye movements introduce additional retinal image motion so that the flow pattern on the retina usually consists of a combination of self-movement and eye movement components. The question of whether this ‘retinal flow’ alone allows the brain to estimate heading, or whether an additional ‘extraretinal’ eye movement signal is needed, has been controversial. This article reviews recent studies that suggest that heading can be estimated visually but extraretinal signals are used to disambiguate problematic situations. The dorsal stream of primate cortex contains motion processing areas that are selective for optic flow and self-motion. Models that link the properties of neurons in these areas to the properties of heading perception suggest possible underlying mechanisms of the visual perception of self-motion.  相似文献   

4.
Mitsudo H  Ono H 《Perception》2007,36(1):125-134
Two psychophysical experiments were conducted to investigate the mechanism that generates stable depth structure from retinal motion combined with extraretinal signals from pursuit eye movements. Stimuli consisted of random dots that moved horizontally in one direction (ie stimuli had common motion on the retina), but at different speeds between adjacent rows. The stimuli were presented with different speeds of pursuit eye movements whose direction was opposite to that of the common retinal motion. Experiment 1 showed that the rows moving faster on the retina appeared closer when viewed without eye movements; however, they appeared farther when pursuit speed exceeded the speed of common retinal motion. The 'transition' speed of the pursuit eye movement was slightly, but consistently, larger than the speed of common retinal motion. Experiment 2 showed that parallax thresholds for perceiving relative motion between adjacent rows were minimum at the transition speed found in experiment 1. These results suggest that the visual system calculates head-centric velocity, by adding retinal velocity and pursuit velocity, to obtain a stable depth structure.  相似文献   

5.
How do people control locomotion while their eyes are simultaneously rotating? A previous study found that during simulated rotation, they can perceive a straight path of self-motion from the retinal flow pattern, despite conflicting extraretinal information, on the basis of dense motion parallax and reference objects. Here we report that the same information is sufficient for active control ofjoystick steering. Participants steered toward a target in displays that simulated a pursuit eye movement. Steering was highly inaccurate with a textured ground plane (motion parallax alone), but quite accurate when an array of posts was added (motion parallax plus reference objects). This result is consistent with the theory that instantaneous heading is determined from motion parallax, and the path of self-motion is determined by updating heading relative to environmental objects. Retinal flow is thus sufficient for both perceiving self-motion and controlling self-motion with a joystick; extraretinal and positional information can also contribute, but are not necessary.  相似文献   

6.
Subjects were exposed to angular decelerations of between 1 and 50 deg/sec’ (1) in total darkness, (2) in view of a dim subject-stationary fixation light, or (3) inside an illuminated subject-stationary striped cylinder (conflict stimulation). Vestibularly induced eye movements led to the oculogyral illusion of object motion. This phenomenon can be distinguished from that of the sensation of self-rotation. At the end of deceleration, the initial velocity of self-rotation sensation is similar during all three stimulus conditions, but is reduced in duration with the conflict stimulus. Differences of interpretation in the literature concerning these phenomena can be explained on the basis of the failure to distinguish between the oculogyral illusion and sensation of self-motion and the inability to fully suppress vestibular eye movements.  相似文献   

7.
Crowell JA  Andersen RA 《Perception》2001,30(12):1465-1488
The pattern of motion in the retinal image during self-motion contains information about the person's movement. Pursuit eye movements perturb the pattern of retinal-image motion, complicating the problem of self-motion perception. A question of considerable current interest is the relative importance of retinal and extra-retinal signals in compensating for these effects of pursuit on the retinal image. We addressed this question by examining the effect of prior motion stimuli on self-motion judgments during pursuit. Observers viewed 300 ms random-dot displays simulating forward self-motion during pursuit to the right or to the left; at the end of each display a probe appeared and observers judged whether they would pass left or right of it. The display was preceded by a 300 ms dot pattern that was either stationary or moved in the same direction as, or opposite to, the eye movement. This prior motion stimulus had a large effect on self-motion judgments when the simulated scene was a frontoparallel wall (experiment 1), but not when it was a three-dimensional (3-D) scene (experiment 2). Corresponding simulated-pursuit conditions controlled for purely retinal motion aftereffects, implying that the effect in experiment 1 is mediated by an interaction between retinal and extra-retinal signals. In experiment 3, we examined self-motion judgments with respect to a 3-D scene with mixtures of real and simulated pursuit. When real and simulated pursuits were in opposite directions, performance was determined by the total amount of pursuit-related retinal motion, consistent with an extra-retinal 'trigger' signal that facilitates the action of a retinally based pursuit-compensation mechanism. However, results of experiment 1 without a prior motion stimulus imply that extra-retinal signals are more informative when retinal information is lacking. We conclude that the relative importance of retinal and extra-retinal signals for pursuit compensation varies with the informativeness of the retinal motion pattern, at least for short durations. Our results provide partial explanations for a number of findings in the literature on perception of self-motion and motion in the frontal plane.  相似文献   

8.
Experiments were performed to investigate the Filehne illusion, the apparent movement of the background during pursuit eye movements. In a dark room subjects tracked a luminous target as it moved at 3°/s or 10.5/s in front of an illuminated background which was either stationary or moved at a fraction of the target speed in the same or opposite direction. Subjects reported whether the background appeared to move and the direction of the movement. Results reveal only a partial loss of position constancy for the background during tracking. The stationary background is perceived to move slightly in the direction opposite to that in which the tracked target is moving. These results seemed best described as an instance of perceptual underconstancy and led to the speculation that the source of the illusion is an underestimation of the rate of pursuit eye movements. An experimental test of this hypothesis which produced supporting evidence is reported.  相似文献   

9.
Previous work has found that repetitive auditory stimulation (click trains) increases the subjective velocity of subsequently presented moving stimuli. We ask whether the effect of click trains is stronger for retinal velocity signals (produced when the target moves across the retina) or for extraretinal velocity signals (produced during smooth pursuit eye movements, when target motion across the retina is limited). In Experiment 1, participants viewed leftward or rightward moving single dot targets, travelling at speeds from 7.5 to 17.5 deg/s. They estimated velocity at the end of each trial. Prior presentation of auditory click trains increased estimated velocity, but only in the pursuit condition, where estimates were based on extraretinal velocity signals. Experiment 2 generalized this result to vertical motion. Experiment 3 found that the effect of clicks during pursuit disappeared when participants tracked across a visually textured background that provided strong local motion cues. Together these results suggest that auditory click trains selectively affect extraretinal velocity signals. This novel finding suggests that the cross-modal integration required for auditory click trains to influence subjective velocity operates at later stages of processing.  相似文献   

10.
Smooth pursuit eye movements enable us to focus our eyes on moving objects by utilizing well-established mechanisms of visual motion processing, sensorimotor transformation and cognition. Novel smooth pursuit tasks and quantitative measurement techniques can help unravel the different smooth pursuit components and complex neural systems involved in its control. The maintenance of smooth pursuit is driven by a combination of the prediction of target velocity and visual feedback about performance quality, thus a combination of retinal and extraretinal information that has to be integrated in various networks. Different models of smooth pursuit with specific in- and output parameters have been developed for a better understanding of the underlying neurophysiological mechanisms and to make quantitative predictions that can be tested in experiments. Functional brain imaging and neurophysiological studies have defined motion sensitive visual area V5, frontal (FEF) and supplementary (SEF) eye fields as core cortical smooth pursuit regions. In addition, a dense neural network is involved in the adjustment of an optimal smooth pursuit response by integrating also extraretinal information. These networks facilitate interaction of the smooth pursuit system with multiple other visual and non-visual sensorimotor systems on the cortical and subcortical level. Future studies with fMRI advanced techniques (e.g., event-related fMRI) promise to provide an insight into how smooth pursuit eye movements are linked to specific brain activation. Applying this approach to neurological and also mental illness can reveal distinct disturbances within neural networks being present in these disorders and also the impact of medication on this circuitry.  相似文献   

11.
《Brain and cognition》2009,69(3):219-228
Smooth pursuit eye movements enable us to focus our eyes on moving objects by utilizing well-established mechanisms of visual motion processing, sensorimotor transformation and cognition. Novel smooth pursuit tasks and quantitative measurement techniques can help unravel the different smooth pursuit components and complex neural systems involved in its control. The maintenance of smooth pursuit is driven by a combination of the prediction of target velocity and visual feedback about performance quality, thus a combination of retinal and extraretinal information that has to be integrated in various networks. Different models of smooth pursuit with specific in- and output parameters have been developed for a better understanding of the underlying neurophysiological mechanisms and to make quantitative predictions that can be tested in experiments. Functional brain imaging and neurophysiological studies have defined motion sensitive visual area V5, frontal (FEF) and supplementary (SEF) eye fields as core cortical smooth pursuit regions. In addition, a dense neural network is involved in the adjustment of an optimal smooth pursuit response by integrating also extraretinal information. These networks facilitate interaction of the smooth pursuit system with multiple other visual and non-visual sensorimotor systems on the cortical and subcortical level. Future studies with fMRI advanced techniques (e.g., event-related fMRI) promise to provide an insight into how smooth pursuit eye movements are linked to specific brain activation. Applying this approach to neurological and also mental illness can reveal distinct disturbances within neural networks being present in these disorders and also the impact of medication on this circuitry.  相似文献   

12.
Subjects were seated inside a full-field optokinetic cylinder which was accelerated with values between. 1 and 100 deg/sec2. Subjects indicated when motion was first detected. Latency for onset of self-motion shows a minimum of around 5 deg/sec2 and increases for lower and faster accelerations of the visual surround. In the low acceleration range, up to 5 deg/sec2, all movement is perceived as circular vection, that is, self-rotation. With higher accelerations, motion of the visual surround is perceived initially; over seconds, this gradually transforms to circular vection. Velocity estimation during low acceleration is better than during comparable vestibular acceleration. During subject rotation in the light, that is, when both the visual and vestibular inputs combine to generate a velocity signal, detection of motion has the shortest latency and represents actual velocity over a wider range than it does with each stimulus alone.  相似文献   

13.
White (1976) reported that presentation of a masking stimulus during a pursuit eye movement interfered with the perception of a target stimulus that shared the same spatial, rather than retinal, coordinates as the mask. This finding has been interpreted as evidence for the existence of spatiotopic visual persistence. We doubted White's results because they implied a high degree of position constancy during pursuit eye movements, contrary to previous research, and because White did not monitor subjects' eye position during pursuit; if White's subjects did not make continuous pursuit eye movements, it might appear that masking was spatial when in fact it was retinal. We attempted to replicate White's results and found that when eye position was monitored to ensure that subjects made continuous pursuit movements, masking was retinal rather than spatial. Subjects' phenomenal impressions also indicated that retinal, rather than spatial, factors underlay performance in this task. The implications of these and other results regarding the existence of spatiotopic visual persistence are discussed.  相似文献   

14.
Despite importance for theories of perception, controversy exists as to whether information is available to the perceptual system about involuntary as well as voluntary eye movements. We measured the perceived direction of targets flashed briefly in an otherwise dark field during the primary phase of optokinetic afternystagmus (OKAN), an involuntary eye movement that persists in darkness following optokinetic stimulation. Perceived direction was measured by unseen pointing in one experiment and by pointing made under visual control in a second experiment. Pointing was essentially veridical in both experiments, indicating that accurate extra-retinal information about eye position (presumably, as efference copy) exists for OKAN. Illusory motion of visual targets, which can occur during involuntary oculomotor responses, therefore cannot be attributed to a lack of efference-copy signals for such eye movements.  相似文献   

15.
In order to study memory of the final position of a smoothly moving target, Hubbard (e.g., Hubbard & Bharucha, 1988) presented smooth stimulus motion and used motor responses. In contrast, Freyd (e.g., Freyd & Finke, 1984) presented implied stimulus motion and used the method of constant stimuli. The same forward error was observed in both paradigms. However, the processes underlying the error may be very different. When smooth stimulus motion is followed by smooth pursuit eye movements, the forward error is associated with asynchronous processing of retinal and extraretinal information. In the absence of eye movements, no forward displacement is observed with smooth motion. In contrast, implied motion produces a forward error even without eye movements, suggesting that observers extrapolate the next target step when successive target presentations are far apart. Finally, motor responses produce errors that are not observed with perceptual judgments, indicating that the motor system may compensate for neuronal latencies.  相似文献   

16.
The accuracy of perceptual judgment of the distance of a moving target tracked at various velocities by pursuit eye movements was examined in relation to the amount of two types of eye movement (smooth pursuit eye movement and compensatory saccade) involved in eye tracking. The perceptually judged distance became shorter as the amount of pursuit-eye-movement component in eye tracking increased. A detailed analysis of the eye-movement data and the size of perceptual underestimation indicated that the underestimation was mainly caused by inaccurate extraretinal information derived from the pursuit-eye-movement system, which underestimated the distance at a constant ratio, irrespective of the velocity of tracking. Egocentric localization was not affected by the mode of eye movements, indicating that the egocentric localization system functions without interference from the inaccurate information from the pursuit-eye-movement system.  相似文献   

17.
Kerzel D 《Psychonomic bulletin & review》2006,13(1):166-73; discussion 174-7
In order to study memory of the final position of a smoothly moving target, Hubbard (e.g., Hubbard and Bharucha, 1988) presented smooth stimulus motion and used motor responses. In contrast, Freyd (e.g., Freyd and Finke, 1984) presented implied stimulus motion and used the method of constant stimuli. The same forward error was observed in both paradigms. However, the processes underlying the error may be very different. When smooth stimulus motion is followed by smooth pursuit eye movements, the forward error is associated with asynchronous processing of retinal and extraretinal information. In the absence of eye movements, no forward displacement is observed with smooth motion. In contrast, implied motion produces a forward error even without eye movements, suggesting that observers extrapolate the next target step when successive target presentations are far apart. Finally, motor responses produce errors that are not observed with perceptual judgments, indicating that the motor system may compensate for neuronal latencies.  相似文献   

18.
In the model of motion perception proposed by Swanston, Wade, and Day (1987, Perception 16 143-159) it was suggested that retinocentric motion and eye movement information are combined independently for each eye, to give left and right orbitocentric representations of movement. The weighted orbitocentric values are then added, to give a single agocentric representation. It is shown that for a physical motion observed without pursuit eye movements this formulation predicts a reduction in the perceived extent of motion with monocular as opposed to binocular viewing. This prediction was tested, and shown to be incorrect. Accordingly, a modification of the model is proposed, in which the left and right retinocentric signals are weighted according to the presence or absence of stimulation, and combined to give a binocular retinocentric representation. In a similar way left-eye and right-eye position signals are combined to give a single binocular eye movement signal for version. This is then added to the binocular retinocentric signal to give the egocentric representation. This modification provides a unified account of both static visual direction and movement perception.  相似文献   

19.
Takahashi K  Niimi R  Watanabe K 《Perception》2010,39(12):1678-1680
Visual patterns consisting of a red-and-blue region with a blurry edge yield illusory motion. Eye movements over a static pattern induced illusory motion of the edge in the direction opposite to the eye movement. The illusion also takes place for patterns in motion without eye movement. The illusion suggests the effect of colour combination on the spatial perception of a blurry edge.  相似文献   

20.
To investigate the effect of smooth pursuit effort against optokinetic nystagmus (OKN) on the magnitude of induced motion, we measured the magnitude of induced motion and eye movements of karate athletes and novices. In Experiment 1, participants were required to pursue a horizontally moving fixation stimulus against a vertically moving inducing stimulus and to point at the most distorted position of the perceived pathway of the fixation stimulus. In Experiments 2 and 3, participants were presented with the inducing stimulus with or without a static fixation stimulus. Experiments 1 and 2 showed a larger magnitude of induced motion and more stable fixation for the athletes than for the novices. Experiment 3 showed no difference in eye movements between the two groups. These results suggest that the magnitude of induced motion reflects fixation stability that may have been strengthened in karate athletes through their experience and training.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号