首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a study of dislocations in decagonal Al70Ni21Co9 quasicrystals by means of diffraction contrast analysis as well as convergent-beam electron diffraction in the transmission electron microscope. The nickel-rich Al–Ni–Co quasicrystals show diffraction patterns characteristic of the basic-nickel decagonal phase exhibiting almost no diffuse scattering. We succeeded in growing this phase in the form of large single quasicrystals. The two-beam bright-field images show a homogeneous background and no striation contrast as reported for other Al–Ni–Co decagonal phases. We have, for the first time in a two-dimensional quasicrystal, observed the weak contrast-extinction condition.  相似文献   

2.
Using a combination of atomic-resolution high-angle annular dark-field (HAADF) Z-contrast imaging and ab initio calculations, atomic models of clusters 2 nm in diameter and 0.8 nm in height are proposed for the Al–Co–Ni pentagonal quasicrystal. This quasicrystal has 5-fold symmetry (the so-called 5f state) without superstructures, and is one of numerous modifications of the Al–Co–Ni decagonal quasicrystal. HAADF results reveal that the two-dimensional quasi-periodic lattice contains mainly Penrose pentagonal tiling. The centres within the decorated pentagonal tiles, i.e. the so-called pentagonal super-clusters, show structural characteristics having both a satellite-orbit shape and a pentagon-symmetry shape. The proposed atomic models, based directly on the HAADF images, are subjected to ab initio total energy calculations. After relaxation, the calculations demonstrate that the models with 5-fold symmetry are energetically more favourable than those with 10-fold symmetry.  相似文献   

3.
The evolution of deformation texture in a Ni–60Co alloy with low stacking fault energy and a grain size in the nanometre range has been investigated. The analyses of texture and microstructure suggest different mechanisms of deformation in nanocrystalline as compared to microcrystalline Ni–60Co alloy. In nanocrystalline material, the mechanism responsible for texture formation has been identified as partial slip, whereas in microcrystalline material, a characteristic texture forms due to twinning and shear banding.  相似文献   

4.
5.
A liquid quinary alloy with composition Ni–5%Cu–5%Fe–5%Sn–5%Ge has been prepared from a containerless state by undercooling. Dendritic growth of α-Ni phase took place with a velocity of 28 m s?1 at the maximum degree of undercooling, which was as high as 405 K (0.24T L). All of the four solute elements Cu, Fe, Sn and Ge exhibited a significant solute trapping effect during the rapid dendrite growth. Segregation-less solidification is consequently realized when the degree of undercooling is sufficiently large. The lattice constant of α-Ni solid solution phase is found to increase with the amount of multicomponent solute trapping.  相似文献   

6.
A Zr62Cu15.5Al10Ni12.5 bulk metallic glass with a large supercooled liquid region of 90 K, produced by copper-mould casting, exhibits a high strength of 1730 MPa and superior but highly inhomogeneous plasticity under uniaxial compression at ambient temperature. Micro-X-ray diffraction shows that compressive loading facilitates crystallization in the monolithic glassy alloy, resulting in room-temperature plasticity. The plastic deformation of the Zr62Cu15.5Al10Ni12.5 BMG may be attributed to in situ precipitation of nanocrystals during compression in heavily deformed areas.  相似文献   

7.
The influence of precipitation morphology, including continuous precipitation (CP) and discontinuous precipitation (DP), on the mechanical behaviour of Cu–Ni–Si alloys was studied. The Cu–6Ni–1.5Si (in wt%) alloy was solution heat treated at 980 °C for 2 h and aged at 500 °C for 0.5 and 3 h to produce CP and DP structures. The DP specimen showed an abnormal increase in tensile ductility with increasing strain rate, unlike the CP counterpart. The impact toughness of the DP specimen was 1.6 times greater than that of CP specimen. The fracture mode in DP specimen was mostly dimpled rupture, while the mixed mode of cleavage fracture and dimpled rupture was noted on the CP specimen.  相似文献   

8.
Fracture behavior of Cu–Ni laminate composites has been investigated by tensile testing. It was found that as the individual layer thickness decreases from 100 to 20 nm, the resultant fracture angle of the Cu–Ni laminate changes from 72° to 50°. Cross-sectional observations reveal that the fracture of the Ni layers transforms from opening to shear mode as the layer thickness decreases while that of the Cu layers keeps shear mode. Competition mechanisms were proposed to understand the variation in fracture mode of the metallic laminate composites associated with length scale.  相似文献   

9.
10.
ABSTRACT

Copper-mould-cast Al–Cu–Ni alloys show adjacent coexistence of in situ grown ordered and eutectic phases. A bimodal microstructure of α–Al and eutectic α-Al+θ-Al2Cu phases with length-scale hierarchy evolves during solidification. Microstructural analysis through Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM) shows the presence of Vacancy-ordered phases (VOPs) with different morphologies in two different compositions.  相似文献   

11.
An elemental powder mixture of Al (70 at.%), Ni (15 at.%) and Cu (15 at.%) was milled in a high-energy ball mill for various times ranging from 10 to 100?h to form ternary intermetallic alloys. X-ray diffraction and transmission electron microscopy techniques were employed for characterization of the samples. The dissolution of the individual elements into an alloy led to the formation of a τ3 vacancy-ordered phase after 100?h of milling. This phase was found to be quite stable against milling, and no other crystalline and amorphous phases could be detected. The powder after 100?h of milling was found to contain mostly τ3 nanophases with partial ordering, and with crystallite sizes in the range 10–20?nm along with a lattice strain of ~0.675%. The milled powder, after annealing at 700°C for 20, 40 and 60?h, revealed the formation of a strain-free and ordered τ3 phase with a crystallite size of 80?nm, indicating grain coarsening. It is interesting to note that the mechanical energy imparted during milling could not completely destroy the vacancy ordering in the τ3 phase, unlike other stoichiometric Al–Cu–transition metal (TM) systems, where the disordered B2 (bcc) phase is commonly observed instead of any vacancy-ordered phases.  相似文献   

12.
The crystal growth velocity of Ni95Si5 and Ni90Si10 alloys as a function of undercooling is investigated using molecular dynamics simulations. The modified imbedded atom method potential yields the equilibrium liquidus temperatures T L?≈?1505 and 1387?K for Ni95Si5 and Ni90Si10 alloys, respectively. From the liquidus temperatures down to the deeply undercooled region, the crystal growth velocities of both the alloys rise to the maximum with increasing undercooling and then drop slowly, whereas the athermal growth process presented in elemental Ni is not observed in Ni–Si alloys. Instead, the undercooling dependence of the growth velocity can be well-described by the diffusion-limited model, furthermore, the activation energy associated with the diffusion from melt to interface increases as the concentration increases from 5 to 10?at.% Si, resulting in the remarkable decrease of growth velocity.  相似文献   

13.
The high-entropy Ti–Zr–V–Cr–Ni (20 at% each) alloy consisting of all five hydride-forming elements was successfully synthesised by the conventional melting and casting as well as by the melt-spinning technique. The as-cast alloy consists entirely of the micron size hexagonal Laves Phase of C14 type; whereas, the melt-spun ribbon exhibits the evolution of nanocrystalline Laves phase. There was no evidence of any amorphous or any other metastable phases in the present processing condition. This is the first report of synthesising a single phase of high-entropy complex intermetallic compound in the equiatomic quinary alloy system. The detailed characterisation by X-ray diffraction, scanning and transmission electron microscopy and energy-dispersive X-ray spectroscopy confirmed the existence of a single-phase multi-component hexagonal C14-type Laves phase in all the as-cast, melt-spun and annealed alloys. The lattice parameter a = 5.08 Å and c = 8.41 Å was determined from the annealed material (annealing at 1173 K). The thermodynamic calculations following the Miedema’s approach support the stability of the high-entropy multi-component Laves phase compared to that of the solid solution or glassy phases. The high hardness value (8.92 GPa at 25 g load) has been observed in nanocrystalline high-entropy alloy ribbon without any cracking. It implies that high-yield strength (~3.00 GPa) and the reasonable fracture toughness can be achieved in this high-entropy material.  相似文献   

14.
The Ti36Ni41Hf15Cu8 melt-spun ribbon undergoes a B2 ? B19′ transformation upon cooling and heating. When the Ti36Ni41Hf15Cu8 melt-spun ribbon is annealed at 873 K for 1 h, the spherical (Ti, Hf)2Ni particles with a diameter of 20–40 nm precipitate in the grain interior. The fine (Ti, Hf)2Ni precipitates improve the stability of phase transformation temperatures and cause martensite domains, with (001) compound twins in three orientations dominant instead of (011) type I twins. {111}-, {113}- and (001)//{111}-type boundaries are observed among these martensite domains. When the (Ti,Hf)2Ni precipitates coarsen, (011) type I twins become main martensite structures in the ribbon annealed at 973 K for 1 h.  相似文献   

15.
A new bulk glassy alloy (BGA) showing macroscopic tensile plastic elongation at room temperature has been developed in the hypoeutectic Zr–Ni–Cu–Al alloy system. The hypoeutectic Zr–Ni–Cu–Al BGA shows a high Poisson's ratio, a low Young's modulus, and is highly malleable in compression. It exhibits a Poisson's ratio of 0.39, a Young's modulus of 73 GPa, and a distinct tensile plastic elongation of about 1.7% at room temperature with necking due to the operation of many shear bands. The tensile plastic deformability seems to originate from modifications of the glass structure with increasing the number of Zr–Zr atomic pairs in the hypoeutectic composition.  相似文献   

16.
Cast Co–5.6 wt% Cu and Co–13.6 wt% Cu alloys were subjected to severe plastic deformation (SPD) by high-pressure torsion (HPT). The HPT treatment drastically decreases the size of the Co grains (from 20 µm to 100 nm) and the Cu precipitates (from 2 µm to 10 nm). As a result, the coercivity H c of both the alloys radically increases. The saturation magnetization, M s, remains almost unchanged. Thus, SPD of the bulk samples opens the way for drastic increase in the coercivity for the Co-based alloys.  相似文献   

17.
Texture development during multi-step cross rolling of a dual-phase Fe–Cr–Ni alloy has been investigated. X-ray diffraction was used to investigate changes in crystallographic texture of both the constituent phases (austenite and ferrite) through changes in orientation distribution function. After deformation, rotated brass (rotated along φ1, i.e. the sample normal direction ND), along with a weak cube texture was observed in austenite, while a strong rotated cube texture was obtained in ferrite. Texture was also simulated for various strains using a co-deformation model by self-consistent visco-plastic (VPSC) formulation. Simulations showed strong rotated brass texture in austenite and a strongly rotated cube, α-fibre (sample rolling direction RD //<1 1 0>) and γ-fibre (ND //<1 1 1>) in ferrite after highest strain (εt = 1.6). VPSC models could not effectively capture the change in crystallographic texture during cross rolling. In ferrite, simulations showed an overestimation of γ-fibre component and an underestimation of rotated cube component. Simulated texture of austenite, on the other hand, showed an overestimation of rotated brass with an absence of cube component. The results are rationalised based on the possible role of shear banding and activation of non-octahedral slip system during cross rolling, both of which are not incorporated in conventional VPSC models.  相似文献   

18.
Stainless steel (316L) and 8 mol pct Y2O3-stabilized zirconia (8Y-ZrO2) were bonded using a Ti–Ni–Ti multilayer at 1173 K (900 °C) for 1 h. Cross-sectional transmission electron microscopy specimens were prepared by an innovative focused ion beam plus lift-out technique. In addition to acicular α-Ti, the dissolution of Fe, Cr, and Ni diffusing outwards from 316L into β-Ti led to the precipitation of the omega (ω) phase with different variants in the residual Ti foil between 316L and Ni. The ω-phase was not found in the residual Ti foil between Ni and 8Y-ZrO2, while Ti2Ni precipitates were precipitated in some α-Ti grains owing to the exclusion of Ni from the β-Ti.  相似文献   

19.
In this work, we investigate the susceptibility of NiTi superelastic wires to the strain rates during tensile testing after hydrogen charging. Cathodic hydrogen charging is performed at a current density of 10?A/m² during 2–12?h in 0.9% NaCl solution and aged for 24?h at room temperature. Specimens underwent one cycle of loading-unloading reaching a stress value of 700 MPa. During loading, strain rates from 10?6 to 5?×?10?2??s?1 have been achieved. After 8?h of hydrogen charging, an embrittlement has been detected in the tensile strain rate range of 10?6 to 10?4?s?1. In contrast, no embrittlement has been detected for strain rates of 10?3?s?1 and higher. However, after 12?h of hydrogen charging and 24?h of annealing at room temperature, the embrittlement occurs in the beginning of the austenite-martensite transformation for all the studied strain rate values. These results show that for a range of critical amounts of diffused hydrogen, the embrittlement of the NiTi superelastic alloy strongly depends on the strain rate during the tensile test. Moreover, it has been shown that this embrittlement occurs for low values of strain rates rather than the higher ones. This behaviour is attributed to the interaction between the diffused hydrogen and growth of the martensitic domain.  相似文献   

20.
The first dynamic interactions between hydrogen and the stress-induced reverse transformation have been investigated by performing an unloading test on a Ni–Ti superelastic alloy subjected to hydrogen charging under a constant applied strain in the elastic deformation region of the martensite phase. Upon unloading the specimen, charged with a small amount of hydrogen, no change in the behaviour of the stress-induced reverse transformation is observed in the stress-strain curve, although the behaviour of the stress-induced martensite transformation changes. With increasing amount of hydrogen charging, the critical stress for the reverse transformation markedly decreases. Eventually, for a larger amount of hydrogen charging, the reverse transformation does not occur, i.e. there is no recovery of the superelastic strain. The residual martensite phase on the side surface of the unloaded specimen is confirmed by X-ray diffraction. Upon training before the unloading test, the properties of the reverse transformation slightly recover after ageing in air at room temperature. The present study indicates that to change the behaviour of the reverse transformation a larger amount of hydrogen than that for the martensite transformation is necessary. In addition, it is likely that a substantial amount of hydrogen in solid solution more strongly suppresses the reverse transformation than hydrogen trapped at defects, thereby stabilising the martensite phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号