首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The integration of spatial maps in pigeons was investigated using a spatial analog to sensory preconditioning. The pigeons were tested in an open-field arena in which they had to locate hidden food among a 4×4 grid of gravel-filled cups. In phase 1, the pigeons were exposed to a consistent spatial relationship (vector) between landmark L (a red L-shaped block of wood), landmark T (a blue T-shaped block of wood) and the hidden food goal. In phase 2, the pigeons were then exposed to landmark T with a different spatial vector to the hidden food goal. Following phase 2, pigeons were tested with trials on which they were presented with only landmark L to examine the potential integration of the phase 1 and 2 vectors via their shared common elements. When these test trials were preceded by phase 1 and phase 2 reminder trials, pigeons searched for the goal most often at a location consistent with their integration of the LT phase 1 and Tphase 2 goal vectors. This result indicates that integration of spatial vectors acquired during phases 1 and 2 allowed the pigeons to compute a novel Lgoal vector. This suggests that spatial maps may be enlarged by successively integrating additional spatial information through the linkage of common elements.  相似文献   

2.
3.
A dynamic 3-D virtual environment was constructed for humans as an open-field analogue of Blaisdell and Cook's (2005) pigeon foraging task to determine if humans, like pigeons, were capable of integrating separate spatial maps. Participants used keyboard keys and a mouse to search for a hidden goal in a 4×4 grid of raised cups. During Phase 1 training, a goal was consistently located between two landmarks (Map 1: blue T and red L). During Phase 2 training, a goal was consistently located down and left of a single landmark (Map 2: blue T). Transfer trials were then conducted in which participants were required to make choices in the presence of the red L alone. Cup choices during transfer assessed participants’ strategies: association (from Map 1), generalization (from Map 2), or integration (combining Map 1 and 2). During transfer, cup choices increased to a location which suggested an integration strategy and was consistent with results obtained with pigeons. However, additional analyses of the human data suggested participants initially used a generalization strategy followed by a progressive shift in search behavior away from the red L. This shift in search behavior during transfer was responsible for the changes in cup choices across transfer trials and was confirmed by a control condition. These new analyses offer an alternative explanation to the spatial integration account proposed for pigeons.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

4.
5.
Differences in spatial knowledge acquired from maps and navigation   总被引:7,自引:0,他引:7  
Models of the spatial knowledge people acquire from maps and navigation and the procedures required for spatial judgments using this knowledge are proposed. From a map, people acquire survey knowledge encoding global spatial relations. This knowledge resides in memory in images that can be scanned and measured like a physical map. From navigation, people acquire procedural knowledge of the routes connecting diverse locations. People combine mental simulation of travel through the environment and informal algebra to compute spatial judgments. An experiment in which subjects learned an environment from navigation or from a map evaluates predictions of these models. With moderate exposure, map learning is superior for judgments of relative location and straight-line distances among objects. Learning from navigation is superior for orienting oneself with respect to unseen objects and estimating route distances. With extensive exposure, the performance superiority of maps over navigation vanishes. These and other results are consonant with the proposed mechanisms.  相似文献   

6.
Spatial relations between landmarks can be represented by means of categories and coordinates. In the present research, this paradigm was applied to sketch maps based on information acquired in goal-directed behaviour of exploration of a university campus area. The first aim was to investigate whether categorical and coordinate information can be considered conceptually independent in sketch maps. The second aim was to assess which kind of distance measure served better to represent coordinate information in the present case study, and finally to assess the factorial structure of coordinate and categorical data. Analytic methodology as well as statistical analysis were found to confirm that separating coordinate and categorical components was formally as well as empirically appropriate. A series of confirmatory factor analyses showed the best fit for the model with two correlated components, as well as an acceptable reliability of measures emerged. The two components were moderately correlated. Moreover, the adoption of Manhattan distance seemed to be the most effective method to represent coordinate spatial relations in spatial sketch maps of areas acquired through navigation.  相似文献   

7.
The involvement of visuo‐spatial working memory (VSWM) in map learning was tested. While learning a map, participants were asked either to perform or abstain from a secondary interference task. Learning of the map was assessed by means of three different tasks (landmark positioning, pointing, route finding), each tapping a different type of spatial knowledge, namely, relative position knowledge, absolute position knowledge and route knowledge. Results showed that VSWM supports learning of absolute landmark positions but not learning of relative landmark positions. Moreover, VSWM appears to be involved in route learning. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
The way a space is learned can result in a mental mapthat is either temporally or spatially organized (Curiel & Radvansky, 1998). The present study examined the availability of spatial information under maplearning conditions where either temporal or spatial organization has been previously observed. The finding was that people were fairly accurate in tasks that explicitly required the use of spatial information. However, there was a particular advantage for having a spatially organized mental mapin a direction judgment task, especially for short distances where fine-grained knowledge was required. In contrast, there was no clear advantage for either group in a distance estimation task. These data are interpreted in the context of Huttenlocher’s category adjustment model.  相似文献   

9.
A real-world open-field search task was implemented with humans as an analogue of Blaisdell and Cook’s (Anim Cogn 8:7–16, 2005) pigeon foraging task and Sturz, Bodily, and Katz’s (Anim Cogn 9:207–217, 2006) human virtual foraging task to 1) determine whether humans were capable of integrating independently learned spatial maps and 2) make explicit comparisons of mechanisms used by humans to navigate real and virtual environments. Participants searched for a hidden goal located in one of 16 bins arranged in a 4 × 4 grid. In Phase 1, the goal was hidden between two landmarks (blue T and red L). In Phase 2, the goal was hidden to the left and in front of a single landmark (blue T). Following training, goal-absent trials were conducted in which the red L from Phase 1 was presented alone. Bin choices during goal-absent trials assessed participants’ strategies: association (from Phase 1), generalization (from Phase 2), or integration (combination of Phase 1 and 2). Results were inconsistent with those obtained with pigeons but were consistent with those obtained with humans in a virtual environment. Specifically, during testing, participants did not integrate independently learned spatial maps but used a generalization strategy followed by a shift in search behavior away from the test landmark. These results were confirmed by a control condition in which a novel landmark was presented during testing. Results are consistent with the bulk of recent findings suggesting the use of alternative navigational strategies to cognitive mapping. Results also add to a growing body of literature suggesting that virtual environment approaches to the study of spatial learning and memory have external validity and that spatial mechanisms used by human participants in navigating virtual environments are similar to those used in navigating real-world environments.  相似文献   

10.
When observers are asked to localize the peripheral position of a target with respect to the midposition of a spatially extended comparison stimulus, they tend to mislocalize the target as being more outer than the midposition of the comparison stimulus (cf. Müsseler, Van der Heijden, Mahmud, Deubel, & Ertsey, 1999). For explaining this finding, we examined a model that postulates that in the calculation of perceived positions two sources are involved, a sensory map and a motor map. The sensory map provides vision and the motor map contains information for saccadic eye movements. The model predicts that errors in location judgements will be observed when the motor map has to provide the information for the judgements. In four experiments we examined, and found evidence for, this prediction. Localization errors were found in all conditions in which the motor map had to be used but not in conditions in which the sensory map could be used.  相似文献   

11.
Early periventricular brain lesions can not only cause cerebral palsy, but can also induce a reorganization of language. Here, we asked whether these different functional consequences can be attributed to topographically distinct portions of the periventricular white matter damage. Eight patients with pre- and perinatally acquired left-sided periventricular brain lesions underwent focal transcranial magnetic stimulation to assess the integrity of cortico-spinal hand motor projections, and functional MRI to determine the hemispheric organization of language production. MRI lesion-symptom mapping revealed that two distinct portions of the periventricular lesions were critically involved in the disruption of cortico-spinal hand motor projections on the one hand and in the induction of language reorganization into the contra-lesional right hemisphere on the other hand. Both regions are located in a position compatible with the course of cortico-spinal/cortico-nuclear projections of the primary motor cortex in the periventricular white matter, as determined by the stereotaxic probabilistic cytoarchitectonic atlas developed by the Jülich group.  相似文献   

12.
Transformed spatial mappings were used to perturb normal visual-motor processes and reveal the structure of internal spatial representations used by the motor control system. In a 2-D discrete aiming task performed under rotated visual-motor mappings, the pattern of spatial movement error was the same for all Ss: peak error between 90 degrees and 135 degrees of rotation and low error for 180 degrees rotation. A two-component spatial representation, based on oriented bidirectional movement axes plus direction of travel along such axes, is hypothesized. Observed reversals of movement direction under rotations greater than 90 degrees are consistent with the hypothesized structure. Aiming error under reflections, unlike rotations, depended on direction of movement relative to the axis of reflection (see Cunningham & Pavel, in press). Reaction time and movement time effects were observed, but a speed-accuracy tradeoff was found only for rotations for which the direction-reversal strategy could be used. Finally, adaptation to rotation operates at all target locations equally but does not alter the relative difficulty of different rotations. Structural properties of the representation are invariant under learning.  相似文献   

13.
Some language communities routinely use allocentric reference directions (e.g. 'uphill-downhill') where speakers of European languages would use egocentric references ('left-right'). Previous experiments have suggested that the different language groups use different reference frames in non-linguistic tasks involving the recreation of oriented arrays. However, a recent paper argues that manipulating test conditions produces similar effects in monolingual English speakers, and in animals.  相似文献   

14.
The hippocampus plays a significant role in spatial memory processing, with sex differences being prominent on various spatial tasks. This study examined sex differences in healthy adults, using functional magnetic resonance imaging (fMRI) in areas implicated in spatial processing during navigation of a virtual analogue of the Morris water-maze. There were three conditions: learning, hidden, and visible control. There were no significant differences in performance measures. However, sex differences were found in regional brain activation during learning in the right hippocampus, right parahippocampal gyrus, and the cingulate cortex. During the hidden condition, the hippocampus, parahippocampal gyrus, and cingulate cortex were activated in both men and women. Additional brain areas involved in spatial processing may be recruited in women when learning information about the environment, by utilizing external cues (landmarks) more than do men, contributing to the observed sex differences in brain activation.  相似文献   

15.
16.
17.
18.
空间导航在生活中时刻发生,空间能力衰退是阿尔兹海默症的重要早期表现。早期关于空间导航神经机制的研究主要关注单个脑区的特异性功能,但这些脑区如何交互以整合不同模态的信息支持复杂导航行为尚不清楚。脑成像技术、脑网络建模方法和神经调控手段的发展,为在脑网络水平理解人类空间导航的认知神经机制提供了重要研究手段。本研究试图融合空间导航认知神经机制研究的最新进展,借助脑网络建模、大数据分析、微电流刺激等前沿研究手段,研究空间导航脑网络的关键拓扑属性特征(如模块化、核心节点等),探寻该功能特异性神经网络的重要影响因素和调控机制,并构建空间导航的脑网络理论模型。研究成果将有利于理解人类复杂导航行为的脑网络基础,为阿尔兹海默症等相关认知障碍脑疾病的筛查和诊断提供重要参考。  相似文献   

19.
《Learning and motivation》2003,34(2):168-184
Rats were trained to select a final, remaining baited arm following a 6- to 10-min delay following their entries into three experimenter-selected baited arms in an enclosed 4-arm radial maze containing different proximally cued arms. Rats’ accuracy in selecting the remaining baited arm was disrupted when the spatial configuration of arm cues was randomly varied over trials following initial training with one configuration in Experiment 1. In Experiment 2, the same rats acquired this task with the original and a new configuration of the same arm cues when each consistently occurred at a specific time of day (one in the morning, the other in the afternoon). Randomly varying the temporal presentations of these configurations following acquisition disrupted rats’ choice accuracy more within the new than the original configuration. Other rats in Experiment 3 learned this task with two configurations containing different types of arm cues (full arm inserts, objects at the arm entrances). When required to relearn this task with recombined configurations of pairs of arm cues from of each configuration, only rats presented pairs of arms arranged differently from that in their original configurations were unable to reacquire the task. Together these results support a cognitive map hypothesis more than a proximal arm cue list hypothesis. These findings were discussed in terms of recent versions of cognitive map theory (Benhamou, 1998; Poucet, 1993) and the possible limits of such processing (Roberts, 2001).  相似文献   

20.
Over the past decade, various techniques have been proposed for localization of cerebral sources of oscillatory activity on the basis of magnetoencephalography (MEG) or electroencephalography recordings. Beamformers in the frequency domain, in particular, have proved useful in this endeavor. However, the localization accuracy and efficacy of such spatial filters can be markedly limited by bias from correlation between cerebral sources and short duration of source activity, both essential issues in the localization of brain data. Here, we evaluate a method for frequency-domain localization of oscillatory neural activity based on the relevance vector machine (RVM). RVM is a Bayesian algorithm for learning sparse models from possibly overcomplete data sets. The performance of our frequency-domain RVM method (fdRVM) was compared with that of dynamic imaging of coherent sources (DICS), a frequency-domain spatial filter that employs a minimum variance adaptive beamformer (MVAB) approach. The methods were tested both on simulated and real data. Two types of simulated MEG data sets were generated, one with continuous source activity and the other with transiently active sources. The real data sets were from slow finger movements and resting state. Results from simulations show comparable performance for DICS and fdRVM at high signal-to-noise ratios and low correlation. At low SNR or in conditions of high correlation between sources, fdRVM performs markedly better. fdRVM was successful on real data as well, indicating salient focal activations in the sensorimotor area. The resulting high spatial resolution of fdRVM and its sensitivity to low-SNR transient signals could be particularly beneficial when mapping event-related changes of oscillatory activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号