首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A substantial body of research has examined the speed-accuracy tradeoff captured by Fitts’ law, demonstrating increases in movement time that occur as aiming tasks are made more difficult by decreasing target width and/or increasing the distance between targets. Yet, serial aiming movements guided by internal spatial representations, rather than by visual views of targets have not been examined in this manner, and the value of confirmatory feedback via different sensory modalities within this paradigm is unknown. Here we examined goal-directed serial aiming movements (tapping back and forth between two targets), wherein targets were visually unavailable during the task. However, confirmatory feedback (auditory, haptic, visual, and bimodal combinations of each) was delivered upon each target acquisition, in a counterbalanced, within-subjects design. Each participant performed the aiming task with their pointer finger, represented within an immersive virtual environment as a 1 cm white sphere, while wearing a head-mounted display. Despite visual target occlusion, movement times increased in accordance with Fitts’ law. Though Fitts’ law captured performance for each of the sensory feedback conditions, the slopes differed. The effect of increasing difficulty on movement times was least influential in the haptic condition, suggesting more efficient processing of confirmatory haptic feedback during aiming movements guided by internal spatial representations.  相似文献   

2.
Visual feedback that provides error information is critical to task quality and motor adjustments. This study investigated how the size of perceived errors via visual feedback affected rate control and force gradation strategy of a designate force task. Fourteen young adults coupled force exertions to a compound sinusoidal signal (0.2 Hz and 0.5 Hz) that fluctuated around a mean level of 30% of maximal voluntary contraction, when the size of execution errors were differently scaled with the error amplification factors. In the low (LAF) and high (HAF) amplification factor conditions, the execution errors in the visual display half and double of the real errors, respectively. The visualized error was the real errors in the medium amplification factor (MAF) condition. In addition to a phase-lead of force output, the LAF condition that virtually reduced the size of error feedback associated with a poorer task accuracy than the MAF and HAF conditions. Virtual increase in error size of visual feedback selectively suppressed the fast target force at 0.5 Hz. In addition, complexity and high-frequency components (>0.75 Hz) of force outputs multiplied progressively with increasing error size. Error-enhancing feedback suppressed fast target force, accentuating the use of error information to tune force output, whereas error-reducing feedback enhanced fast target force in favor of predictive force control.  相似文献   

3.
Augmented feedback, provided by coaches or displays, is a well-established strategy to accelerate motor learning. Frequent terminal feedback and concurrent feedback have been shown to be detrimental for simple motor task learning but supportive for complex motor task learning. However, conclusions on optimal feedback strategies have been mainly drawn from studies on artificial laboratory tasks with visual feedback only. Therefore, the authors compared the effectiveness of learning a complex, 3-dimensional rowing-type task with either concurrent visual, auditory, or haptic feedback to self-controlled terminal visual feedback. Results revealed that terminal visual feedback was most effective because it emphasized the internalization of task-relevant aspects. In contrast, concurrent feedback fostered the correction of task-irrelevant errors, which hindered learning. The concurrent visual and haptic feedback group performed much better during training with the feedback than in nonfeedback trials. Auditory feedback based on sonification of the movement error was not practical for training the 3-dimensional movement for most participants. Concurrent multimodal feedback in combination with terminal feedback may be most effective, especially if the feedback strategy is adapted to individual preferences and skill level.  相似文献   

4.
Visual correction of a rapid goal-directed response   总被引:1,自引:0,他引:1  
The purpose of this study was to investigate the role of dynamic and static visual cues in improvement of accuracy during a pointing movement. In the experiment, subjects were required to point finger rapidly at visual targets as accurately as possible. Movement amplitude was 15 cm, and movement times ranged from 100 to 190 msec. Three visual feedback conditions were applied: no feedback, dynamic ongoing feedback on the complete hand trajectory, and static error feedback on the movement end-point. Two spatial movement outcomes were considered, mean constant error and intraindividual dispersion of pointings. Data were analyzed with regard to effects of feedback and speed. Under the no-feedback condition, accuracy was lowest; constant error was not speed-dependent, whereas dispersion increased with speed of movement. Accuracy was highest under the complete feedback condition and was speed-dependent, as shown by both constant error and dispersion. Under error feedback, accuracy was intermediate and was also speed-dependent. The results are discussed in terms of the interchange between correcting mechanisms vs delayed control within the motor regulatory processes.  相似文献   

5.
Subjects were required to learn to depress a bar using concurrent visual feedback, which was removed for test. The overshooting found in test is attributed to visual dominance of the feedback traces; the way in which it occurs is not clear, since the reduction of the ratio of movement to display gain from 1:15 to 1:7.5 did not reduce overshooting. Performance improved after extended practice, but the direction of error remained positive. The results are discussed in terms of motor programming and feedback control of movement and are interpreted as evidence against Adams' (1971) two-trace theory.  相似文献   

6.
The accuracy of a long aiming movement was studied as a function of whether it was performed toward or away from the midline of the subject's body in the presence or absence of visual feedback. 30 right-handed, male university students (19-26 yr.) served as subjects. With movement distance and duration controlled, the mean percentage of error was 6.34% less for movements made toward the body's midline than for those performed away from the midline. The mean percentage of error was also 48% less in the presence of visual feedback than in its absence. However, contrary to our expectation, movements executed toward the body's midline were not appreciably less disrupted in the absence of visual feedback than movements performed away from the midline.  相似文献   

7.
This experiment investigated the effects of spatial (gain) and temporal (frequency) properties of visual feedback on the control of isometric force output. Participants performed an index finger isometric force production task with five different levels of visual gain and four feedback frequencies. There was a significant effect of gain on mean and standard deviation (SD) of the force output, whereas feedback frequency significantly affected the force SD and root-mean square error. Significant effects of gain and frequency and a gain X frequency interaction on the approximate entropy (ApEn) of the force revealed the effect of visual feedback uncertainty on the force fluctuation dynamics. The combined effects of the spatial and temporal properties of visual feedback on ApEn were approximated by a sum of quadratic functions, indicating their compensatory effect on the informational content of the dynamics of isometric force.  相似文献   

8.
Many studies have shown that subjects can correct their own errors of movement more quickly than they can react to external stimuli. In the control of movements, three general categories of feedback have been defined as follows: (a) knowledge of results, primarily visually mediated, (b) proprioceptive or kinesthetic, such as from muscle spindles and joint receptors, and (c) corollary discharge or efference copy within the central nervous system. Experiments were conducted on eight normal human subjects to study the effects of these feedbacks on simple RT, choice RT, and error correction time. The movement used was plantarflexion and dorsiflexion of the ankle joint. The feedback loops were modified (a) by inverting the visual display to alter the subject's perception of results and (b) by applying a 100-Hz vibration simultaneously to both flexor and extensor muscles of the ankle joint. Central processing was altered by giving the subjects moderated doses of alcohol (blood-alcohol concentration levels of up to.10%). Vibration and alcohol increased both simple and choice RT but not the error correction time. These data reinforce the concept that there is a central pathway which can mediate error correcting responses.  相似文献   

9.
The relationship between movement extent and movement direction coding mechanisms was investigated using a visuomotor adaptation paradigm. To determine if these mechanisms are either modular or interdependent, young healthy college students were tested while they performed a visually guided drawing task that incorporated varying combinations of movement distance and direction distortions. Analysis of participants' standardized movement duration, initial directional error, and movement length over the course of the adaptation process revealed a certain degree of interdependence between direction and extent coding mechanisms. Specifically, changes in final adaptation levels and after-effects depended on the order of introduction of the visual distortions. This interaction can be characterized as unidirectional, where alterations in rotational feedback interfere with subsequent adaptation to gain changes, whereas alterations in "display gain" do not significantly impede the adaptation to "display rotation". Moreover, simultaneous exposure to gain and rotational distortions resulted in better learning. The results argue against an independent coding of movement direction and extent during adaptation by the central nervous system.  相似文献   

10.
Seeing a talker's face influences auditory speech recognition, but the visible input essential for this influence has yet to be established. Using a new seamless editing technique, the authors examined effects of restricting visible movement to oral or extraoral areas of a talking face. In Experiment 1, visual speech identification and visual influences on identifying auditory speech were compared across displays in which the whole face moved, the oral area moved, or the extraoral area moved. Visual speech influences on auditory speech recognition were substantial and unchanging across whole-face and oral-movement displays. However, extraoral movement also influenced identification of visual and audiovisual speech. Experiments 2 and 3 demonstrated that these results are dependent on intact and upright facial contexts, but only with extraoral movement displays.  相似文献   

11.
Previous research on sensorimotor synchronization has manipulated the somatosensory information received from the tapping finger to investigate how feedback from an active effector affects temporal coordination. The current study explored the role of feedback from passive body parts in the regulation of spatiotemporal motor control parameters by employing a task that required finger tapping on one’s own skin at anatomical locations of varying tactile sensitivity. A motion capture system recorded participants’ movements as they synchronized with an auditory pacing signal by tapping with the right index finger on either their left index fingertip (Finger/Finger) or forearm (Finger/Forearm). Results indicated that tap timing was more variable, and movement amplitude was larger and more variable, when tapping on the finger than when tapping on the less sensitive forearm. Finger/Finger tapping may be impaired relative to Finger/Forearm tapping due to ambiguity arising through overlap in neural activity associated with tactile feedback from the active and the passive limb in the former. To compensate, the control system may strengthen the assignment of tap-related feedback to the active finger by generating correlated noise in movement kinematics and tap dynamics.  相似文献   

12.
The retention of discrete movements was examined under augmented and minimal feedback conditions. The augmented condition was presented for both the criterion and recall movements and consisted of providing visual, auditory, and heightened proprioceptive cues with each movement. Under minimal conditions, no visual, auditory or heightened proprioceptive cues were provided. Absolute and constant error revealed that under augmented conditions recall accuracy was improved. The retention interval x feedback condition interaction failed significance for both sources of error indicating that there was no evidence of differential decay rates. Variable error appeared to be an informative index of forgetting. The results were interpreted to be in support of the view that a memory trace is imprinted with feedback from all modalities and that the amount of such feedback determines memory trace strength.  相似文献   

13.
People often move in synchrony with auditory rhythms (e.g., music), whereas synchronization of movement with purely visual rhythms is rare. In two experiments, this apparent attraction of movement to auditory rhythms was investigated by requiring participants to tap their index finger in synchrony with an isochronous auditory (tone) or visual (flashing light) target sequence while a distractor sequence was presented in the other modality at one of various phase relationships. The obtained asynchronies and their variability showed that auditory distractors strongly attracted participants' taps, whereas visual distractors had much weaker effects, if any. This asymmetry held regardless of the spatial congruence or relative salience of the stimuli in the two modalities. When different irregular timing patterns were imposed on target and distractor sequences, participants' taps tended to track the timing pattern of auditory distractor sequences when they were approximately in phase with visual target sequences, but not the reverse. These results confirm that rhythmic movement is more strongly attracted to auditory than to visual rhythms. To the extent that this is an innate proclivity, it may have been an important factor in the evolution of music.  相似文献   

14.
Following a left CVA, a skilled professional typist sustained a disturbance of typing disproportionate to her handwriting disturbance. Typing errors were predominantly of the sequencing type, with spatial errors much less frequent, suggesting that the impairment was based on a relatively early (premotor) stage of processing. Depriving the subject of visual feedback during handwriting greatly increased her error rate. Similarly, interfering with auditory feedback during speech substantially reduced her self-correction of speech errors. These findings suggested that impaired ability to utilize somesthetic information--probably caused by the subject's parietal lobe lesion--may have been the basis of the typing disorder.  相似文献   

15.
The authors examined force control in oral and manual effectors as a function of sensory feedback (i.e., visual and auditory). Participants produced constant isometric force via index finger flexion and lower lip elevation to 2 force levels (10% and 20% maximal voluntary contraction) and received either online visual or online auditory feedback. Mean, standard deviation, and coefficient of variation of force output were used to quantify the magnitude of force variability. Power spectral measures and approximate entropy of force output were calculated to quantify the structure of force variability. Overall, it was found that the oral effector conditions were more variable (e.g., coefficient of variation) than the manual effector conditions regardless of sensory feedback. No effector differences were found for the structure of force variability with visual or auditory feedback. Oral and manual force control appears to involve different control mechanisms regulating continuous force production in the presence of visual or auditory feedback.  相似文献   

16.
Three experiments are reported which investigate the role of concurrent and terminal feedback in the acquisition of a discrete positioning task. Experiments I and II compare the efficiency of concurrent visual feedback (CVF) and terminal visual feedback (TVF) as training methods when the gain of the visual display is varied from 1:1 to 4:1. There is a consistent interaction between feedback method and gain of the display over the recall trials. Concurrent visual feedback is inferior to terminal visual feedback at a gain of 4:1 in Experiment I and when the displayed and actual movement directions differ (Experiment II). Experiment III explores the relationship between concurrent and terminal feedback when feedback is of a digital form and its precision is varied. Concurrent feedback is worse as a training method although there is no interaction between feedback method and precision of feedback. These findings are discussed in the light of a variety of factors which could contribute to the inferiority of concurrent feedback as a training method.  相似文献   

17.
The purpose of this study is to examine the effects of various levels of alcohol consumption on human response to auditory and visual stimuli in terms of reaction time, movement time, total reaction time, and error rate. Placebo level and three low-level alcohol doses were randomly assigned to 20 male university student volunteers. 30 min. after consuming the alcohol or placebo, participants responded to either auditory or visual stimuli. Total reaction time increased significantly at the mid-low dose of alcohol (0.3 g/kg). For alcohol doses less than .5 g/kg, the change in total reaction time was confined to reaction time, i.e., the processing time between onset of stimulus and onset of movement. Effects of alcohol were significantly more pronounced in the choice-type tests. Notably, the effects of alcohol on total reaction time and error rate were significant for auditory but not visual stimuli.  相似文献   

18.
Participants moved a mouse along a force-feedback-defined linear path, either without vision or while watching a cursor set to 1 of 3 levels of visual:haptic gain (all >1:1). They attempted to haptically reproduce the movement without visual feedback. Errors increased with gain, reaching 70% overestimation at the highest gain. Forewarning participants about gain variability did not eliminate this effect. The gain level was potentially cued during the movement by the mismatch between visual feedback and kinesthetic feedback. Moreover, because participants did not achieve cursor-speed constancy across gain levels, visual speed was another cue to gain. Collectively, these cues failed to prevent visual distortion of movement reproduction.  相似文献   

19.
The use of visual action feedback (AIF) in learning a simple motor response can sometimes be as effective as the more conventional terminal feedback (TIF) but sometimes leads to gross overshooting errors when AIF is removed. Both the amplitude of movement and the gain of the AIF have strong and systematic effects on the error in attempted reproductions. Percent overestimation increases linearly with fog. gain and decreases linearly with log. amplitude. This may be due to an intersensory effect in which visual and kinesthetic feedback sum to form a unitary impression of the movement on which subsequent attempts at reproduction are based.  相似文献   

20.
High and low field-articulators were compared on the accuracy with which they could adjust a rod to intermediate visual-kinesthetic positions while blindfolded, under four sensory-feedback conditions. Independent groups of 10 Ss were given auditory, visual, kinesthetic, or no sensory feedback for 16 trials and then tested on 8 trials without sensory feedback. High field-articulators were significantly more accurate on the feedback trials for all sensory-feedback conditions but not in terms of mean absolute error. The mean constant error on the test trials was significantly lower for the high field-articulators on all feedback conditions except for visual feedback where the low field-articulator had a lower constant error. Both the high and low field-articulators became more accurate and learned more in judging visual-kinesthetic position when auditory feedback was given. Low field-articulators showed significant improvement in accuracy with kinesthetic feedback. The results supported the hypothesis that intermediate directions can be learned and supported previous perceptual research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号