首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There is a long tradition of trying to find a satisfactory interpretation of Everett's relative-state formulation of quantum mechanics. Albert and Loewer recently described two new ways of reading Everett: one we will call the single-mind theory and the other the many-minds theory. I will briefly describe these theories and present some of their merits and problems. Since both are no-collapse theories, a significant merit is that they can take advantage of certain properties of the linear dynamics, which Everett apparently considered to be important, to constrain their statistical laws.  相似文献   

2.
I argue that a strong mind–body dualism is required of any formulation of quantum mechanics that satisfies a relatively weak set of explanatory constraints. Dropping one or more of these constraints may allow one to avoid the commitment to a mind–body dualism but may also require a commitment to a physical–physical dualism that is at least as objectionable. Ultimately, it is the preferred basis problem that pushes both collapse and no-collapse theories in the direction of a strong dualism in resolving the quantum measurement problem. Addressing this problem illustrates how the construction and evaluation of explanatorily rich physical theories are inextricably tied to the evaluation of traditional philosophical issues.  相似文献   

3.
On Bohm's formulation of quantum mechanics particles always have determinate positions and follow continuous trajectories. Bohm's theory, however, requires a postulate that says that particles are initially distributed in a special way: particles are randomly distributed so that the probability of their positions being represented by a point in any regionR in configuration space is equal to the square of the wave-function integrated overR. If the distribution postulate were false, then the theory would generally fail to make the right statistical predictions. Further, if it were false, then there would at least in principle be situations where a particle would approach an eigenstate of having one position but in fact always be somewhere very different. Indeed, we will see how this might happen even if the distribution postulate were true. This will help to show how loose the connection is between the wave-function and the positions of particles in Bohm's theory and what the precise role of the distribution postulate is. Finally, we will briefly consider two attempts to formulate a version of Bohm's theory without the distribution postulate.  相似文献   

4.
5.
6.
Our purpose in this paper is to delineate an ontology for quantum mechanics that results adequate to the formalism of the theory. We will restrict our aim to the search of an ontology that expresses the conceptual content of the recently proposed modal-Hamiltonian interpretation, according to which the domain referred to by non-relativistic quantum mechanics is an ontology of properties. The usual strategy in the literature has been to focus on only one of the interpretive problems of the theory and to design an interpretation to solve it, leaving aside the remaining difficulties. On the contrary, our aim in the present work is to formulate a “global” solution, according to which different problems can be adequately tackled in terms of a single ontology populated of properties, in which systems are bundles of properties. In particular, we will conceive indistinguishability between bundles as a relation derived from indistinguishability between properties, and we will show that states, when operating on combinations of indistinguishable bundles, act as if they were symmetric with no need of a symmetrization postulate.  相似文献   

7.
Danko Georgiev 《Axiomathes》2013,23(4):683-695
Our conscious minds exist in the Universe, therefore they should be identified with physical states that are subject to physical laws. In classical theories of mind, the mental states are identified with brain states that satisfy the deterministic laws of classical mechanics. This approach, however, leads to insurmountable paradoxes such as epiphenomenal minds and illusionary free will. Alternatively, one may identify mental states with quantum states realized within the brain and try to resolve the above paradoxes using the standard Hilbert space formalism of quantum mechanics. In this essay, we first show that identification of mind states with quantum states within the brain is biologically feasible, and then elaborating on the mathematical proofs of two quantum mechanical no-go theorems, we explain why quantum theory might have profound implications for the scientific understanding of one’s mental states, self identity, beliefs and free will.  相似文献   

8.
Sergio Martinez 《Synthese》1990,82(1):97-125
An interpretation of quantum mechanics that rejects hidden variables has to say something about the way measurement can be understood as a transformation on states of individual systems, and that leads to the core of the interpretive problems posed by Luders' projection rule: What, if any, is its physical content? In this paper I explore one suggestion which is implicit in usual interpretations of the rule and show that this view does not stand on solid ground. In the process, important aspects of the role played by the projection postulate in the conceptual structure of quantum mechanics will be clarified. It will be shown in particular that serious objections can be raised against the (often implicit) view that identifies the physical relation of compatibility preserved by Luders' rule with the relation of simultaneous measurability.  相似文献   

9.
Pessoa  Osvaldo 《Synthese》1997,113(3):323-346
This work examines whether the environmentally-induced decoherence approach in quantum mechanics brings us any closer to solving the measurement problem, and whether it contributes to the elimination of subjectivism in quantum theory. A distinction is made between ,collapse, and ,decoherence,, so that an explanation for decoherence does not imply an explanation for collapse. After an overview of the measurement problem and of the open-systems paradigm, we argue that taking a partial trace is equivalent to applying the projection postulate. A criticism of Zurek's decoherence approach to measurements is also made, based on the restriction that he must impose on the interaction between apparatus and environment. We then analyze the element of subjectivity involved in establishing the boundary between system and environment, and criticize the incorporation of Everett's branching of memory records into the decoherence research program. Sticking to this program, we end by sketching a proposal for ‘environmentally-induced collapse’. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
Hasok Chang 《Erkenntnis》1997,46(2):143-163
Customary discussions of quantum measurements are unrealistic, in the sense that they do not reflect what happens in most actual measurements even under ideal circumstances. Even theories of measurement which discard the projection postulate tend to retain two unrealistic assumptions of the von Neumann theory: that a measurement consists of a single physical interaction, and that the topic of every measurement is information wholly contained in the quantum state of the object of measurement. I suggest that these unrealistic assumptions originate from an overly literal interpretation of the operator formalism of quantum mechanics. I also suggest, following Park, that some issues can be clarified by distinguishing the sense of the term 'measurement' occurring in the quantum-mechanical operator formalism, and the sense of 'measurement' that refers to actual processes of gaining information about the physical world.  相似文献   

11.
The measurement problem concerns an apparent conflict between the two fundamental principles of quantum mechanics, namely the Schrödinger equation and the measurement postulate. These principles describe inconsistent behavior for quantum systems in so-called “measurement contexts.” Many theorists have thought that the measurement problem can only be resolved by proposing a mechanistic explanation of (genuine or apparent) wavefunction collapse that avoids explicit reference to “measurement.” However, I argue here that the measurement problem dissolves if we accept Humeanism about laws of nature. On a Humean metaphysics, there is no conflict between the two principles, nor is there any inherent problem with the concept of “measurement” figuring into the account of collapse.  相似文献   

12.
Philip Ehrlich 《Synthese》1982,50(2):233-277
We examine the notions of negative, infinite and hotter than infinite temperatures and show how these unusual concepts gain legitimacy in quantum statistical mechanics. We ask if the existence of an infinite temperature implies the existence of an actual infinity and argue that it does not. Since one can sensibly talk about hotter than infinite temperatures, we ask if one could legitimately speak of other physical quantities, such as length and duration, in analogous terms. That is, could there be longer than infinite lengths or temporal durations? We argue that the answer is surprisingly yes, and we outline the properties of a number system that could be employed to characterize such magnitudes.  相似文献   

13.
Jeffrey Bub 《Topoi》1991,10(1):27-34
The properties of classical and quantum systems are characterized by different algebraic structures. We know that the properties of a quantum mechanical system form a partial Boolean algebra not embeddable into a Boolean algebra, and so cannot all be co-determinate. We also know that maximal Boolean subalgebras of properties can be (separately) co-determinate. Are there larger subsets of properties that can be co-determinate without contradiction? Following an analysis of Bohrs response to the Einstein-Podolsky-Rosen objection to the complementarity interpretation of quantum mechanics, a principled argument is developed justifying the selection of particular subsets of properties as co-determinate for a quantum system in particular physical contexts. These subsets are generated by sets of maximal Boolean subalgebras, defined in each case by the relation between the quantum state and a measurement (possibly, but not necessarily, the measurement in terms of which we seek to establish whether or not a particular property of the system in question obtains). If we are required to interpret quantum mechanics in this way, then predication for quantum systems is quite unlike the corresponding notion for classical systems.  相似文献   

14.
Obituary     
In 'How Many Lives Has Schrödinger's Cat?' David Lewis argues that the Everettian no-collapse interpretation of quantum mechanics is in a tangle when it comes to probabilities. This paper aims to show that the difficulties that Lewis raises are insubstantial. The Everettian metaphysics contains a coherent account of probability. Indeed it accounts for probability rather better than orthodox metaphysics does.  相似文献   

15.
16.
The literature on physicalism often fails to elucidate, I think, what the word physical in physicalism precisely means. Philosophers speak at times of an ideal set of fundamental physical facts, or they stipulate that physical means non-mental, such that all fundamental physical facts are fundamental facts pertaining to the non-mental. In this article, I will probe physicalism in the very much tangible framework of quantum mechanics. Although this theory, unlike “ideal physics” or some “final theory of non-mentality”, is an incomplete theory of the world, I believe this analysis will be of value, if for nothing else, at least for bringing some taste of physical reality, as it were, back to the debate. First, I will introduce a broad characterization of the physicalist credo. In Sect. 2, I will provide a rather quick review of quantum mechanics and some of its current interpretations. In Sect. 3, the notion of quantum non-separability will be analyzed, which will facilitate a discussion of the wave function ontology in Sect. 4. In Sects. 5 and 6, I will explore competing views on the implications of this ontology. In Sect. 7, I will argue that the prior results, based on a thoroughly realist interpretation of quantum mechanics, support only a weak version of non-reductive physicalism.  相似文献   

17.
We discuss three problems concerning the use of formal languages in theoretical physics: (i) the definability of time and spacetime in classical physical theories; (ii) how to cope with indistinguishable elementary particles in quantum mechanics without labeling them; and (iii) how to get a formal picture of quantum states jumping.  相似文献   

18.
David Lewis is a natural target for those who believe that findings in quantum physics threaten the tenability of traditional metaphysical reductionism. Such philosophers point to allegedly holistic entities they take both to be the subjects of some claims of quantum mechanics and to be incompatible with Lewisian metaphysics. According to one popular argument, the non-separability argument from quantum entanglement, any realist interpretation of quantum theory is straightforwardly inconsistent with the reductive conviction that the complete physical state of the world supervenes on the intrinsic properties of and spatio-temporal relations between its point-sized constituents. Here I defend Lewis's metaphysical doctrine, and traditional reductionism more generally, against this alleged threat from quantum holism. After presenting the non-separability argument from entanglement, I show that Bohmian mechanics, an interpretation of quantum mechanics explicitly recognized as a realist one by proponents of the non-separability argument, plausibly rejects a key premise of that argument. Another holistic worry for Humeanism persists, however, the trouble being the apparently holistic character of the Bohmian pilot wave. I present a Humean strategy for addressing the holistic threat from the pilot wave by drawing on resources from the Humean best system account of laws.  相似文献   

19.
Claudia E. Vanney 《Zygon》2015,50(3):736-756
Quantum mechanics (QM) studies physical phenomena on a microscopic scale. These phenomena are far beyond the reach of our observation, and the connection between QM's mathematical formalism and the experimental results is very indirect. Furthermore, quantum indeterminism defies common sense. Microphysical experiments have shown that, according to the empirical context, electrons and quanta of light behave as waves and other times as particles, even though it is impossible to design an experiment that manifests both behaviors at the same time. Unlike Newtonian physics, the properties of quantum systems (position, velocity, energy, time, etc.) are not all well‐defined simultaneously. Moreover, quantum systems are not characterized by their properties, but by a wave function. Although one of the principles of the theory is the uncertainty principle, the trajectory of the wave function is controlled by the deterministic Schrödinger equations. But what is the wave function? Like other theories of the physical sciences, quantum theory assigns states to systems. The wave function is a particular mathematical representation of the quantum state of a physical system, which contains information about the possible states of the system and the respective probabilities of each state.  相似文献   

20.
Non-locality, indeterminacy, the meaning of the Schrödinger equation, and quantum measurements are interpretation issues in quantum mechanics that go beyond our typical view of the world through the classical physics lenses of the mechanistic determinism. In “Cosmic Mind?,” Stuart Kauffman offers an interpretation of the Schrödinger equation and quantum measurements that might support a cosmic mind. Robert John Russell in NIODA uses the indeterminacy to offer a mechanism for God to interact with nature. This response reviews these two interpretations of quantum mechanics with respect to the two-slit and EPR experiments and how these two interpretations of quantum mechanics could solve issues of interpretations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号