首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several tendencies found in explicit judgments about object motion have been interpreted as evidence that people possess a naive theory of impetus. The theory states that objects that are caused to move by other objects acquire force that determines the kind of motion exhibited by the object, and that this force gradually dissipates over time. I argue that the findings can better be understood as manifestations of a general understanding of externally caused motion based on experiences of acting on objects. Experiences of acting on objects yield the idea that properties of the cause of motion are transmitted to the effect object. This idea functions as a heuristic for explicit predictions of object motion under conditions of uncertainty. This accounts not only for the findings taken as evidence for the impetus theory, but also for several findings that fall outside the scope of the impetus theory. It has also been claimed that judgments about the location at which a moving object disappeared are influenced by the impetus theory. I argue that these judgments are better explained in a different way, as best-guess extrapolations made by the visual system as a practical guide to interactions with the object, such as interception.  相似文献   

2.
Several recent studies in which subjects solved pencil-and-paper problems concerning the behavior of moving objects have shown that many people have incorrect beliefs about motion. The present study considers the question of whether these naive beliefs are manifested in situations where people observe and interact with moving objects. Several findings in the problem-solving literature suggest that abstract or unrealistic tasks may fail to tap knowledge and reasoning abilities that are routinely used in more concrete or realistic situations. Thus, most people may have accurate knowledge about the behavior of moving objects, knowledge that they use in their everyday interactions with objects in motion. However, this knowledge may not be activated in the context of abstract, static problems, and as a result people attempting to solve such problems may resort to naive beliefs. Three experiments examine this possibility in the context of one specific naive belief, the curvilinear impetus belief. Contrary to expectations, results suggest that the curvilinear impetus belief is used not only on pencil-and-paper problems but also in situations where people observe and interact with moving objects. Implications of these findings are discussed.  相似文献   

3.
In A. Michotte's (1946/1963) launching effect, a moving launcher contacts a stationary target, and then the launcher becomes stationary and the target begins to move. In this experiment, observers viewed modifications of a launching effect display, and displacement in memory for the location of targets was measured. Forward displacement of targets in launching effect displays was decreased relative to that of targets (a) that were presented in isolation and either moved at a constant fast or slow velocity or decelerated or (b) that moved in a direction orthogonal to previous motion of the launcher. Possible explanations involving a deceleration of motion or landmark attraction effects were ruled out. Displacement patterns were consistent with naive impetus theory and the hypothesis that observers believed impetus from the launcher was imparted to the target and then dissipated.  相似文献   

4.
When moving toward a stationary scene, people judge their heading quite well from visual information alone. Much experimental and modeling work has been presented to analyze how people judge their heading for stationary scenes. However, in everyday life, we often move through scenes that contain moving objects. Most models have difficulty computing heading when moving objects are in the scene, and few studies have examined how well humans perform in the presence of moving objects. In this study, we tested how well people judge their heading in the presence of moving objects. We found that people perform remarkably well under a variety of conditions. The only condition that affects an observer’s ability to judge heading accurately consists of a large moving object crossing the observer’s path. In this case, the presence of the object causes a small bias in the heading judgments. For objects moving horizontally with respect to the observer, this bias is in the object’s direction of motion. These results present a challenge for computational models.  相似文献   

5.
The shadows cast by moving objects enable human adults and infants to infer the motion trajectories of objects. Nonhuman animals must also be able to discriminate between objects and their shadows and infer the spatial layout of objects from cast shadows. However, the evolutionary and comparative developmental origins of sensitivity to cast shadows have not been investigated. In this study, we used a familiarity/novelty preferential looking procedure to assess the ability of infant macaques, aged 7–24 weeks, to discriminate between a ‘depth’ display containing a ball and cast shadow moving diagonally and an ‘up’ display containing a ball with a diagonal trajectory and a shadow with a horizontal trajectory. The infant macaques could discriminate the trajectories of the balls based on the moving shadows. These findings suggest that the ability to perceive the motion trajectory of an object from the moving shadow is common to both humans and macaques.  相似文献   

6.
In the present study, we examined whether it is easier to judge when an object will pass one’s head if the object’s surface is textured. There are three reasons to suspect that this might be so: First, the additional (local) optic flow may help one judge the rate of expansion and the angular velocity more reliably. Second, local deformations related to the change in angle between the object and the observer could help track the object’s position along its path. Third, more reliable judgments of the object’s shape could help separate global expansion caused by changes in distance from expansion due to changes in the angle between the object and the observer. We can distinguish among these three reasons by comparing performance for textured and uniform spheres and disks. Moving objects were displayed for 0.5–0.7 sec. Subjects had to decide whether the object would pass them before or after a beep that was presented 1 sec after the object started moving. Subjects were not more precise with textured objects. When the disk rotated in order to compensate for the orientation-related contraction that its image would otherwise undergo during its motion, it appeared to arrive later, despite the fact that this strategy increases the global rate of expansion. We argue that this is because the expected deformation of the object’s image during its motion is considered when time to passage is judged. Therefore, the most important role for texture in everyday judgments of time to passage is probably that it helps one judge the object’s shape and thereby estimate how its image will deform as it moves.  相似文献   

7.
When a person moves in a straight line through a stationary environment, the images of object surfaces move in a radial pattern away from a single point. This point, known as thefocus of expansion (FOE), corresponds to the person’s direction of motion. People judge their heading from image motion quite well in this situation. They perform most accurately when they can see the region around the FOE, which contains the most useful information for this task. Furthermore, a large moving object in the scene has no effect on observer heading judgments unless it obscures the FOE. Therefore, observers may obtain the most accurate heading judgments by focusing their attention on the region around the FOE. However, in many situations (e.g., driving), the observer must pay attention to other moving objects in the scene (e.g., cars and pedestrians) to avoid collisions. These objects may be located far from the FOE in the visual field. We tested whether people can accurately judge their heading and the three-dimensional (3-D) motion of objects while paying attention to one or the other task. The results show that differential allocation of attention affects people’s ability to judge 3-D object motion much more than it affects their ability to judge heading. This suggests that heading judgments are computed globally, whereas judgments about object motion may require more focused attention.  相似文献   

8.
While augmenting the literature with data that further exhibit context-specific responding to qualitative motion problems, Cooke and Breedin (1994) exhibit common theoretical and methodological difficulties that undermine their conclusions. Herein these flaws are explicated and con. trasted with features of studies that avoid the pitfalls of (2) theoretical vagueness, (2) overly coarse data aggregation, (3) nondiagnostic, errarful assessment items, and (4) imprecise measures of the variety of (mis/)conceptions (e.g., of “impetus,” or inertia). The difficulties call into question Cooke and Breedin’s claims that impetus ideas play minor roles in performance and that “naive theories” of motion are largely constructed on line. Because each confusion often arises from the polysemy of “theory,” same empirical criteria for “theoryness” are discussed, including subjects’ conceptual, temporal, and coherence-based consistencies (regarding researchers’ models and isomorphs). While naive physics may be idiosyncratic, baroque, context-driven, and apparently inconsistent, it might (additionally) be based upon fairly a priori, systematic, and temporally stable information.  相似文献   

9.
Previous research on the perception of 3-D object motion has considered time to collision, time to passage, collision detection, and judgments of speed and direction of motion but has not directly studied the perception of the overall shape of the motion path. We examined the perception of the magnitude of curvature and sign of curvature of the motion path for objects moving at eye level in a horizontal plane parallel to the line of sight. We considered two sources of information for the perception of motion trajectories: changes in angular size and changes in angular speed. Three experiments examined judgments of relative curvature for objects moving at different distances. At the closest distance studied, accuracy was high with size information alone but near chance with speed information alone. At the greatest distance, accuracy with size information alone decreased sharply, but accuracy for displays with both size and speed information remained high. We found similar results in two experiments with judgments of sign of curvature. Accuracy was higher for displays with both size and speed information than with size information alone, even when the speed information was based on parallel projections and was not informative about sign of curvature. For both magnitude of curvature and sign of curvature judgments, information indicating that the trajectory was curved increased accuracy, even when this information was not directly relevant to the required judgment.  相似文献   

10.
A mathematical analysis is presented that attempts to describe the available visual information about rigid and nonrigid motion and the three-dimensional structure of rigidly moving objects. Unlike other approaches, the analysis is based on the geometric relations among a set of trajectories defined over an extended region of space-time. Two experiments are reported in which observers viewed computer simulations of moving objects and were required to judge whether the observed motion appeared to be rigid or nonrigid. The results suggest that the mathematical limitations of a trajectory-based analysis of visual information are consistent with the perceptual limitations of actual human observers.  相似文献   

11.
We employed audiovisual stream/bounce displays, in which two moving objects with crossing trajectories are more likely to be perceived as bouncing off, rather than streaming through, each other when a brief sound is presented at the coincidence of the two objects. However, Kawachi and Gyoba (Perception 35:1289–1294, 2006b) reported that the presence of an additional moving object near the two objects altered the perception of a bouncing event to that of a streaming event. In this study, we extended this finding and examined whether alteration of the event perception could be induced by the visual context, such as by occluded object motion near the stream/bounce display. The results demonstrated that even when the sound was presented, the continuous occluded motion strongly biased observers’ percepts toward the streaming percept during a short occlusion interval (approximately 100 ms). In contrast, when the continuous occluded motion was disrupted by introducing a spatiotemporal gap in the motion trajectory or by removing occlusion cues such as deletion/accretion, the bias toward the streaming percept declined. Thus, we suggest that a representation of object motion generated under a limited occlusion interval interferes with audiovisual event perception.  相似文献   

12.
Recent studies have shown that many people demonstrate erroneous beliefs about motion when asked to predict the trajectories of objects. The present experiments examine whether people can select as correct natural trajectories over anomalous ones when presented with the actual on-going event (motion condition) or static representations of the event (no-motion condition). McCloskey's curved tube problem was used as the event. Results indicate that adults benefit from the motion information in these stimuli, choosing the correct path more often in the motion condition. Men performed better than women in both conditions; this gender effect could not be attributed to formal instruction in physics. Only in the no-motion condition did any men prefer a path which reflected an impetus model of motion. Some women chose a curvilinear path in the motion condition, and in the no-motion condition the curvilinear path was their most often selected alternative. Fifth-grade children demonstrated no effect for gender and their path preferences resembled those of adult males. Children's responses failed to demonstrate a preference for those curvilinear paths which reflect an impetus-based approach to the problem. Adults' performance in the no-motion condition was not enhanced by instructions to employ mental imagery of the event.  相似文献   

13.
Four experiments were directed at understanding the influence of multiple moving objects on curvilinear (i.e., circular and elliptical) heading perception. Displays simulated observer movement over a ground plane in the presence of moving objects depicted as transparent, opaque, or black cubes. Objects either moved parallel to or intersected the observer's path and either retreated from or approached the moving observer. Heading judgments were accurate and consistent across all conditions. The significance of these results for computational models of heading perception and for information in the global optic flow field about observer and object motion is discussed.  相似文献   

14.
In Michotte's (1946/1963) launching effect paradigm, a moving launcher contacts a stationary target, and then the launcher becomes stationary and the target begins to move. In the experiments reported here, observers were presented with modifications of a launching effect display, and displacement in memory for targets was measured. Faster launcher velocities resulted in larger displacements for moving targets, and the effect of launcher velocity was larger with faster target velocities. Launcher velocity did not influence displacement of targets that remained stationary after contact. Increases in the distance travelled by moving targets after contact from the launcher resulted in smaller displacements. Displacement appeared to result from an expectation that impetus would be imparted from the launcher rather than from contact between the launcher and the target. Displacement patterns were consistent with naïve impetus theory and with the hypothesis that observers believed impetus from the launcher was imparted to the target and dissipated with subsequent target motion.  相似文献   

15.
Current theories of arrival time have difficulty explaining performance in the common but neglected case of nonlinear approach. Global tau, a variable supposed to guide time-to-passage (TTP) judgments of objects approaching on linear trajectories, does not apply to circular movement. However, TTP judgments are surprisingly accurate in such cases. We simulated movement through a three-dimensional cloud of point-lights on various circular trajectories. Arrival-time judgments were found to be above chance when observers had to determine which of two expansionless targets would pass them first. Similar to the inside bias observed in heading studies on circular trajectories, observers showed a strong bias to select the target on the inside of their own curved motion path as passing by first. Analysis of the projected target motion revealed that targets on the inside had lower optical velocities and relatively high optical acceleration rates. Empirical TTP judgments agreed best with a strategy based on relative optical velocity changes.  相似文献   

16.
Current theories of arrival time have difficulty explaining performance in the common but neglected case of nonlinear approach. Global tau, a variable supposed to guide time-to-passage (TTP) judgments of objects approaching on linear trajectories, does not apply to circular movement. However, TTP judgments are surprisingly accurate in such cases. We simulated movement through a three-dimensional cloud of point-lights on various circular trajectories. Arrival-time judgments were found to be above chance when observers had to determine which of two expansionless targets would pass them first. Similar to the inside bias observed in heading studies on circular trajectories, observers showed a strong bias to select the target on the inside of their own curved motion path as passing by first. Analysis of the projected target motion revealed that targets on the inside had lower optical velocities and relatively high optical acceleration rates. Empirical TTP judgments agreed best with a strategy based on relative optical velocity changes.  相似文献   

17.
晏碧华  游旭群 《心理学报》2015,47(2):212-223
相对到达时间任务(RAT)是判断两个运动客体哪个先到达指定目标, 可用来评估个体动态空间能力。采用RAT任务对飞行员与普通被试进行对照研究, 寻求发现两组在运动客体特征和视觉空间运动特征及其相互关系上的处理差异。设计了3个实验分别考察客体颜色、客体大小、运动方向、速率大小、视线方向以及背景特征对判断的影响。结果显示:(1)客体颜色不影响运动客体的相对时间判断, 客体大小、运动方向、速率大小、视线方向以及背景特征影响判断; (2)控制组对显示屏上从左到右的运动客体的相对时间判断好于从右到左任务, 大速率任务判断更好, 对大客体快速行驶而小客体低速行驶时的相对到达时间更易区分, 且与两眼视线方向不一致的运动方向会使控制组判断更难, 运动背景中的目标线特征改变使控制组判断绩效降低; (3)和控制组比, 飞行员反应快正确率高, 其快速判断优势集中体现在从右到左运动以及小速率任务上, 且在不同运动方向和不同速率上的反应时均无差异, 飞行员的处理优势还表现在不受客体大小、视线方向改变和目标线特征改变的影响。结论:飞行员能在变化的空间中准确处理相对速度、相对距离、相对时间等运动信息, 能分离客体大小、背景、运动方向等因素对相对到达时间判断的影响, 在运动空间中飞行员具有较高场独立性认知特征和动态空间处理能力。  相似文献   

18.
When a person moves in a straight line through a stationary environment, the images of object surfaces move in a radial pattern away from a single point. This point, known as the focus of expansion (FOE), corresponds to the person's direction of motion. People judge their heading from image motion quite well in this situation. They perform most accurately when they can see the region around the FOE, which contains the most useful information for this task. Furthermore, a large moving object in the scene has no effect on observer heading judgments unless it obscures the FOE. Therefore, observers may obtain the most accurate heading judgments by focusing their attention on the region around the FOE. However, in many situations (e.g., driving), the observer must pay attention to other moving objects in the scene (e.g., cars and pedestrians) to avoid collisions. These objects may be located far from the FOE in the visual field. We tested whether people can accurately judge their heading and the three-dimensional (3-D) motion of objects while paying attention to one or the other task. The results show that differential allocation of attention affects people's ability to judge 3-D object motion much more than it affects their ability to judge heading. This suggests that heading judgments are computed globally, whereas judgments about object motion may require more focused attention.  相似文献   

19.
Four experiments investigated observers’ judgments of rigidity for different types of optical motion. The depicted structural deformations were of two types: (1) those with nonparallel image trajectories that are detectable from the first-order spatiotemporal relations between pairs of views; and (2) those with parallel image trajectories that can only be detected from higher order relations among three or more views. Patterns were composed of smooth flow fields in Experiments 1 and 3, and of wire frame figures in Experiments 2 and 4. For both types of display, the nonrigidity detectable from the first-order spatiotemporal structure of the motion sequence was much more salient than the deformation detectable only from the higher order spatiotemporal structure. These results indicate that observers’ judgments of rigidity are based primarily on a two-view analysis, but that some useful information can be obtained under appropriate circumstances from higher order spatiotemporal relations among three or more views.  相似文献   

20.
We explored how speakers and listeners use hand gestures as a source of perceptual-motor information during naturalistic communication. After solving the Tower of Hanoi task either with real objects or on a computer, speakers explained the task to listeners. Speakers’ hand gestures, but not their speech, reflected properties of the particular objects and the actions that they had previously used to solve the task. Speakers who solved the problem with real objects used more grasping handshapes and produced more curved trajectories during the explanation. Listeners who observed explanations from speakers who had previously solved the problem with real objects subsequently treated computer objects more like real objects; their mouse trajectories revealed that they lifted the objects in conjunction with moving them sideways, and this behavior was related to the particular gestures that were observed. These findings demonstrate that hand gestures are a reliable source of perceptual-motor information during human communication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号