首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The specific σ-receptor agonist (+)-SKF 10047 and antagonist BD 1047 were used to investigate whether this receptor was involved in passive-avoidance training in the day-old chick. We found 300 μM (+)-SKF 10047 to be amnesic when injected into the lobus parolfactorius 5 h after training (p < .01). Higher or lower concentrations of (+)-SKF 10047 did not disrupt memory formation. The amnesia produced by the efficacious dose of (+)-SKF 10047 was reversed by the specific antagonist, BD 1047. It is suggested that the σ-receptor may exert its effect on passive-avoidance memory consolidation during the later stages of long-term memory formation by modulation of memory-related neurotransmission.  相似文献   

2.
Rats received administration of an opiate antagonist immediately following single-trial passive-avoidance training. Retention of passive-avoidance conditioning was assessed 1 week after training. Compared to noninjected and vehicle-injected control groups, post-training naloxone (2.0 mg/kg) administration significantly increased retention. A comparable facilitation of retention was also observed when animals received post-training administration of beta-funaltrexamine (40 mg/kg). These data provide additional support for mu opiate receptor activity in the regulation of memory processes.  相似文献   

3.
Cytochrophin-4 (cyt-4), a tetrapeptide with opioid-like activity, caused amnesia when injected into chick forebrain 5 hr after passive-avoidance training. Bilateral injections of cyt-4 directly into the lobus parolfactorius (LPO) resulted in the chicks being amnesic for the training task 24 hr later, whereas unilateral injections of cyt-4 were effective only when injected into the right LPO. Cyt-4-induced amnesia was reversed by the general opioid antagonist, naloxone, indicating that cyt-4 was acting via an opioid receptor. The mu- and delta-opioid receptors (but not kappa-opioid or ORL(1)-receptors) have been shown to be involved in memory formation 5 hr after training (). Because an antagonist of the mu-opioid receptor inhibited memory, we attempted to reverse the effect of cyt-4 using mu-opioid receptor agonists. Met[enk] was unable to reverse the inhibition of memory formation by cyt-4 suggesting that the mu-opioid receptor is not involved in this effect. However endomorphin-2 (endo-2) reversed the effect of cyt-4. We further investigated the action of endo-2 using an irreversible antagonist of the mu-receptor, beta-funaltrexamine (beta-FAN), and found that endo-2 reversed beta-FAN-induced amnesia indicating that endo-2 was not acting on the mu-opioid receptor in the chick. Because unilateral injections of beta-FAN were not amnesic (bilateral injections were amnesic) this provided further evidence that the effect of cyt-4 was not mediated via the mu-opioid receptor. Coinjection of the delta-receptor agonist, (D-Pen(2), L-Pen(5))enkephalin (DPLPE), reversed the disruptive effect of cyt-4 on memory. However, memory modulation via the delta-opioid receptor was not lateralized to the right hemisphere suggesting that cyt-4 does not act via this receptor either. It was shown that an antagonist of the epsilon-opioid receptor inhibited memory at the 5 hr time point. We conclude that the epsilon-opioid receptor or an unidentified opioid receptor subtype could be involved in the action of cyt-4.  相似文献   

4.
The effect of blockade of 5-HT1A receptors was investigated on (1). retention in a mildly aversive passive-avoidance task, and (2). spontaneous single-unit activity of central nucleus of the amygdala (CeA) neurons, a brain site implicated in modulation of retention. Systemic administration of the selective 5-HT1A antagonist NAN-190 immediately after training markedly-and dose-dependently-facilitated retention in the passive-avoidance task; enhanced retention was time-dependent and was not attributable to variations in wattages of shock received by animals. Systemic administration of NAN-190 had mixed effects on spontaneous single-unit activity of CeA neurons recorded extracellularly in vivo; microiontophoretic application of 5-HT, in contrast, consistently and potently suppressed CeA activity. The present findings-that 5-HT1A receptor blockade by NAN-190 (1). enhances retention in the passive-avoidance task, and (2). does not consistently increase spontaneous neuronal activity of the CeA-provide evidence that a serotonergic system tonically inhibits modulation of retention in the passive-avoidance task through activation of the 5-HT1A receptor subtype at brain sites located outside the CeA.  相似文献   

5.
The effects of a specific presynaptic cholinergic antagonist, toosendanin, on memory formation following a passive avoidance training experience in day-old chicks was investigated. Bilateral injection of toosendanin into the neostriatal/hyperstriatal region of the chick forebrain produced memory impairment in a dose-dependent manner. Retention deficits were apparent from 20 min following training in chicks treated with toosendanin, regardless of the injection time relative to training. Chicks that received injections of the drug at corresponding times prior to retention tests showed normal retention levels, suggesting that toosendanin has no effect on performance and memory retrieval. These results indicate an involvement of cholinergic transmission during an early stage of memory formation.  相似文献   

6.
The dorsolateral and medial prefrontal cortex are critical for immediate memory processing. The possibility has been raised that those two areas may also contribute to long-term memory formation. Here, we studied the role of specific receptors in dorsolateral and medial prefrontal cortex in immediate and in long-term memory formation of one-trial inhibitory avoidance. Four different specific receptor ligands were infused into these two areas: the dopamine D1 receptor antagonist, SCH23390, the GABA(A) receptor agonist, muscimol, the AMPA glutamatergic receptor antagonist, ciano-nitro-quinoxaline-dione (CNQX), and the NMDA glutamatergic receptor antagonist, aminophosphonovaleric acid (AP5). In all cases the doses used had been previously shown to affect immediate or long-term memory. In the experiments on immediate memory the drugs were given 5 min before training and the animals were tested 3s post-training. These animals were then also tested 24h later for long-term memory. The effect of the treatments on long-term memory was studied by their infusion 0, 90, 180 or 270 min post-training, testing the animals 24h after training. Immediate memory was inhibited by SCH23390, muscimol and CNQX, but not by AP5, given into any of the two subregions. Long-term memory formation was inhibited by SCH23390, muscimol and CNQX, but not by AP5, given pre-training or 0, 90 or 180 but not 270 min post-training into the dorsolateral region; or 90 but not 0 or 180 min post-training into the medial region. Thus, there is a time- and receptor-dependent correlation in the two areas between their role in immediate and in long-term memory processing. Both roles require intact glutamate AMPA and dopamine D1 receptors, are inhibited by GABAergic synapses, and are unaffected by AP5. In the dorsolateral prefrontal cortex the link between immediate and long-term memory appears to be direct; in the medial area the link suffers a 90 min delay.  相似文献   

7.
The study of memory modulation in infant rats has typically focused on reminder/retrieval treatments involving reexposure to components of the internal or external training context. Rarely have studies employed pharmacological treatments to investigate the neurochemical substrates of memory storage in preweanling rats. The present study investigated the effect of 100 mg/kg of glucose, a common memory modulator in adult mammals, on memory for passive-avoidance conditioning in 18-day-old Sprague-Dawley rats. Subjects that were administered an immediate post-training injection of glucose performed significantly better, on a retention test 24 h following training, than those animals that received saline. The glucose group also performed comparably to a control group that was tested 10 min following training. These results are consistent with those of the memory modulation literature in adults and suggest that the rapid rate of forgetting in immature organisms may be the result of a deficiency in a general memory modulatory system.  相似文献   

8.
In Experiment I, prior experience with passive-avoidance training followed by latent extinction was given 1, 3, 5, or 15 days before criterion (re) training and an amnesic treatment. It produced nearly complete protection from retrograde amnesia at the three shorter intervals; at the longest interval, amnesia was present but less severe than in a control group without the familiarization. In Experiment II, prior experience was given 1, 5, or 15 days before a noncontingent shock and an amnesic treatment. Evidence of a reactivation of memory was obtained only at the longest interval. Thus, familiarization and reactivation seem to represent different processes. The results are interpreted as consistent with explanations stressing the disruption of retrieval in retrograde amnesia.  相似文献   

9.
Memory persistence needs a new event of consolidation 12h after the acquisition. We investigated the role of the cholinergic activity on the persistence of memory. For this purpose, we performed the treatments 9 or 12h after acquisition and the memory tested 2 or 7 days after inhibitory avoidance (IA) training. Here we report that activity of medial septum, by transitorily inactivating this structure with lidocaine 12h after IA training, is essential for memory persistence at the 7th day, but not for the formation at the 2nd day. We also report that muscarinic and nicotinic cholinergic receptors of CA1 area are engaged on memory persistence. Since scopolamine (mAChRs antagonist) and mecamylamine (nAChRs blocker) infusions, 12h post-training, demonstrated impairment on long term memory (LTM), persistence on the 7th day but no effect on LTM formation was found on the 2nd day in the IA test. The same effects were found with pirenzepine, an M1 antagonist. No effects on the formation and persistence of memory on the 2nd and 7th days were demonstrated after DHβE infusions (nAChRs subtype antagonist α4β2, α3β2). These findings suggest that mAChR and nAChR at the CA1 area, and also MS activation, are required for the persistence of memory.  相似文献   

10.
Group I metabotropic glutamate receptors (mGlu1 and 5) have been implicated in synaptic plasticity and learning and memory. However, much of our understanding of how these receptors in different brain regions contribute to distinct memory stages in different learning tasks remains incomplete. The present study investigated the effects of the mGlu5 receptor antagonist, 2-methyl-6-(phenylethynyl)-pyridine (MPEP), and mGlu1 receptor antagonist, (S)-(+)-alpha-amino-4-carboxy-2-methylbenzene-acetic acid (LY 367385) in the dorsal hippocampus on the consolidation and extinction of memory for inhibitory avoidance learning. Male, Sprague-Dawley rats were trained in a single-trial step-down inhibitory avoidance task. MPEP, LY 367385 or saline were infused bilaterally into the CA1 region immediately after training or immediately after the first retention test which was given 24h after training. Rats receiving MPEP (1.5 or 5.0 microg/side) or LY 367385 (0.7 or 2.0 microg/side) infusion exhibited a dose-dependent decrease in retention when tested 24h later. MPEP was ineffective while LY 367385 significantly attenuated extinction when injected after the first retention test using an extinction procedure. These findings indicate a selective participation of hippocampal group I mGlu receptors in memory processing in this task.  相似文献   

11.
The present experiment examined whether forgetting of contextual attributes—the loss of discriminability of background stimulus features over time—also occurs when a memory remains inaccessible (amnestic) during the retention interval. To examine this issue, rats received an acute hypothermia treatment that caused reversible anterograde amnesia for a passive-avoidance task and were tested 1 or 7 days later in either the same or a different context. At the short retention interval, the subjects discriminated between the contexts, as evidenced by the finding that reversal of amnesia occurred only in the training context. However, at the 7-day interval, recovery of the avoidance response was induced in either context, reflecting the forgetting of differentiating characteristics. These findings indicate that inaccessible memory remains susceptible to processes of modification and distortion that typically influence intact memories.  相似文献   

12.
The role of dopamine receptors in regulating the formation of recognition memory remains poorly understood. Here we show the effects of systemic administration of dopamine receptor agonists and antagonists on the formation of memory for novel object recognition in rats. In Experiment I, rats received an intraperitoneal (i.p.) injection of vehicle, the selective D1 receptor agonist SKF38393 (1.0 and 5.0mg/kg), or the D2 receptor agonist quinpirole (1.0 and 5.0mg/kg) immediately after training. In Experiment II, rats received an injection of vehicle, the dopamine receptor antagonist SCH23390 (0.1 and 0.05 mg/kg), or the D2 receptor antagonist raclopride (0.5 and 0.1mg/kg) before training, followed by an injection of vehicle or the nonselective dopamine receptor agonist apomorphine (0.05 mg/kg) immediately after training. SKF38393 at 5mg/kg produced an enhancement of novel object recognition memory measured at both 24 and 72 h after training, whereas the dose of 10mg/kg impaired 24-h retention. Posttraining administration of quinpirole did not affect 24-h retention. Apomorphine enhanced memory in rats given pretraining raclopride, suggesting that the effect was mediated by selective activation of D1 receptors. The results indicate that activation of D1 receptors can enhance recognition memory consolidation. Importantly, pharmacological activation of D1 receptors enhanced novel object recognition memory even under conditions in which control rats showed significant retention.  相似文献   

13.
The cannabinoid CB1 receptor has been shown to be critically involved in the extinction of fear memory. Systemic injection of a CB1 receptor antagonist prior to extinction training blocked extinction. Conversely, administration of the cannabinoid uptake inhibitor AM404 facilitated extinction in a dose-dependent manner. Here we show that bilateral infusion of CB1 receptor agonists into the amygdala after memory reactivation blocked reconsolidation of fear memory measured with fear-potentiated startle. The effect was dose-dependent and could be blocked by AM251, a specific CB1 receptor antagonist. In contrast, the effect of CB1 agonists on reconsolidation was no longer seen if memory reactivation was omitted. Concomitant with block of reconsolidation, CB1 agonist-treated animals did not exhibit shock-induced reinstatement or spontaneous recovery of fear. The absence of recovery was not attributable to permanent damage to the amygdala in WIN-treated rats, nor did the effect result from alteration of baseline startle or shock reactivity. These results suggest that CB1 agonists could impair fear memory via blocking reconsolidation.  相似文献   

14.
15.
Previous studies with general inhibitors of nitric oxide synthase have yielded variable and contradictory results with respect to their effects on memory. This may have been due to differential effects of blocking the various isoforms of this enzyme. We show that day-old chicks trained on a single-trial passive-avoidance task suffered significant memory loss from ~40 min post-training following post-training intracranial administration of a potent inhibitor of eNOS. Administration of a specific nNOS or iNOS inhibitor at the same time had no effect on retention, although a role for either of these isoforms when administered at a different time after learning has yet to be fully investigated. The onset of memory loss following eNOS inhibition is the same as observed following general NOS inhibition, which suggests that amnestic effects observed in previous studies using nonspecific inhibitors may be attributable to blocking the function of eNOS. The findings indicate that eNOS may play a role in memory formation for this task, which is at least distinct from any role that may be played by nNOS.  相似文献   

16.
Experiences with a high emotional content (aversive) tend to be stored as long-term memories; however, there are also contextual recollections, which form a significant part of our memories. Different research has shown that the insular cortex (IC) plays an important role during aversive memory formation, yet its role during incidental/non-aversive learning like pre-exposure contextual memory formation has received little attention. The objective of this research was to establish the role of cholinergic activity in the IC through its muscarinic receptors during the formation of inhibitory avoidance (IA) memory, as well as during pre-exposure contextual memory, using a paradigm such as latent inhibition (LI). Rats with bilateral cannulae directed into the IC were trained in the LI paradigm of IA or IA task alone. The muscarinic antagonist receptor scopolamine was infused bilaterally into the IC 5 min before the pre-exposure into the dark chamber of the IA cage, one day before the conventional IA training or during the IA training day. During the IA test, the entrance latency into the dark chamber of the IA cage was measured as an index of contextual memory. The results showed that scopolamine infused before and after IA training disrupts inhibitory avoidance memory. Also, it showed that the pre-exposed saline-infused animals (LI) had a lower entrance latency compared to the group not pre-exposed (IA). However, the group that received scopolamine into the IC before, but not after, the pre-exposure to the dark chamber, presented a similar latency to the IA group, showing a blockade of the latent inhibition of the IA. These results suggest that cholinergic activity in the insular cortex is necessary during the acquisition and consolidation of avoidance memory, but appears necessary only during the acquisition of pre-exposure non-aversive contextual memory.  相似文献   

17.
Although the cholinergic system has long been implicated in the formation of memory, there had been no direct demonstration that activation of this system can actually induce specific behavioral memory. We have evaluated the "cholinergic-memory" hypothesis by pairing a tone with stimulation of the nucleus basalis (NB), which provides acetylcholine to the cerebral cortex. We found that such pairing induces behaviorally-validated auditory memory. NB-induced memory has the key features of natural memory: it is associative, highly-specific and rapidly induced. Moreover, the level of NB stimulation controls the amount of detail in memory about the tonal conditioned stimulus. While consistent with the hypothesis that properly-timed release of acetylcholine (ACh) during natural learning is sufficient to induce memory, pharmacological evidence has been lacking. This study asked whether scopolamine, a muscarinic antagonist, impairs or prevents the formation of NB-induced memory. Adult male rats were first tested for responses (disruption of ongoing respiration) to tones (1-15 kHz), constituting a pre-training behavioral frequency generalization gradient (BFGG). Then, they received a single session of 200 trials of a tone (8.00 kHz, 70 dB, 2 s) paired with electrical stimulation of the NB (100 Hz, 0.2 s). Immediately after training, they received either scopolamine (1.0 mg/kg, i.p.) or saline. Twenty-four hours later, they were tested for specific memory by obtaining post-training BFGGs. The saline group developed CS-specific memory, manifested by maximum increase in response specific to the CS frequency band. In contrast, the scopolamine group exhibited no such memory. These findings indicate that NB-induced specific associative behavioral memory requires the action of intrinsic acetylcholine at muscarinic receptors, and supports the hypothesis that natural memory formation engages the nucleus basalis and muscarinic receptors.  相似文献   

18.
Previously acquired aversive and appetitive memories are not stable and permanent. The reactivation of such memories by re-exposure to training stimuli renders them vulnerable to disruption by amnestic agents such as the noncompetitive N-methyl-D-aspartate receptor antagonist (+)-5-methyl-10,11-dihydro-SH-dibenzo{a,d}cyclohepten-5,10-imine maleate (MK-801). However, relatively little is known about the parameters that influence the reactivation process. Here, we show that the method of stimulus presentation during memory reactivation is of great importance. Male Lister Hooded rats were trained to acquire a lever press response that delivered a sucrose reward paired with a light conditioned stimulus (CS). The CS-sucrose association was then reactivated through re-exposure to the CS, either contingently upon the lever press response, or noncontingently in the absence of instrumental responding. Systemic administration of MK-801 (0.1 mg/kg) at the time of memory reactivation resulted in amnesia, and hence a reduction in subsequent sucrose seeking induced by, and dependent upon, presentation of the CS, only when the memory was reactivated contingently. Therefore, stimuli may have to be presented in the same manner at memory reactivation as during learning in order to render a previously acquired memory vulnerable to disruption. These results have important implications for the potential translational use of glutamatergic treatments in conjunction with targeted memory reactivation.  相似文献   

19.
Long-term habituation to a novel environment is one of the most elementary forms of nonassociative learning. Here we studied the effect of pre- or posttraining intrahippocampal administration of drugs acting on specific molecular targets on the retention of habituation to a 5-min exposure to an open field measured 24 h later. We also determined whether the exposure to a novel environment resulted in the activation of the same intracellular signaling cascades previously shown to be activated during hippocampal-dependent associative learning. The immediate posttraining bilateral infusion of CNQX (1 μg/side), an AMPA/kainate glutamate receptor antagonist, or of muscimol (0.03 μg/side), a GABAA receptor agonist, into the CA1 region of the dorsal hippocampus impaired long-term memory of habituation. The NMDA receptor antagonist AP5 (5 μg/side) impaired habituation when infused 15 min before, but not when infused immediately after, the 5-min training session. In addition, KN-62 (3.6 ng/side), an inhibitor of calcium calmodulin-dependent protein kinase II (CaMKII), was amnesic when infused 15 min before or immediately and 3 h after training. In contrast, the cAMP-dependent protein kinase (PKA) inhibitor Rp-cAMPS, the mitogen-activated protein kinase kinase (MAPKK) inhibitor PD098059, and the protein synthesis inhibitor anisomycin, at doses that fully block memory formation of inhibitory avoidance learning, did not affect habituation to a novel environment. The detection of spatial novelty is associated with a sequential activation of PKA, ERKs (p44 and p42 MAPKs) and CaMKII and the phosphorylation of c-AMP responsive element-binding protein (CREB) in the hippocampus. These findings suggest that memory formation of spatial habituation depends on the functional integrity of NMDA and AMPA/kainate receptors and CaMKII activity in the CA1 region of the hippocampus and that the detection of spatial novelty is accompanied by the activation of at least three different hippocampal protein kinase signaling cascades.  相似文献   

20.
Activation of N-methyl-d-aspartate (NMDA) receptors has been hypothesized to mediate certain forms of learning and memory. This hypothesis is based on the ability of competitive and uncompetitive NMDA receptor antagonists to disrupt learning. We investigated the effects of glycine site antagonists and partial agonists on deficits of acquisition (learning) and consolidation (memory) in a single trial inhibitory avoidance learning paradigm. Posttraining administration of either hypoxia (exposure to 7% oxygen) or the convulsant drug pentylenetetrazole (PTZ) (45 mg/kg) to mice impaired consolidation without producing neuronal cell death. Pretreatment with the competitive glycine antagonist 7-chlorokynurenic acid (7KYN) and the glycine partial agonists 1-aminocyclopropanecarboxylic acid (ACPC) and (+)HA-966 prevented memory deficits induced by hypoxia and PTZ, but did not affect scopolamine-induced learning impairment. In addition, ACPC prevented consolidation deficits evoked by a nonexcitotoxic concentration of l-trans-pyrrolidine-2, 4-dicarboxylate, a competitive inhibitor of glutamate transport that increases extracellular levels of glutamate. Moreover, (+)HA-966, 7KYN, and ACPC facilitated both acquisition and consolidation of inhibitory avoidance training, an effect that was dose-dependent and reversed by glycine. These results indicate that memory deficits induced by both hypoxia and PTZ involve NMDA receptor activation. Furthermore, the present findings demonstrate that glycine site antagonists and partial agonists prevent memory deficits of inhibitory avoidance learning by affecting consolidation, but not acquisition processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号