首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The visual field exerts powerful effects on egocentric spatial localization along both horizontal and vertical dimensions. Thus, (1) prism-produced visual pitch and visual slant generate similar mislocalizations of visually perceived eye level (VPEL) and visually perceived straight ahead (VPSA) and (2) in darkness curare-produced extraocular muscle paresis under eccentric gaze generates similar mislocalizations in VPEL and VPSA that are essentially eliminated by introducing a normal visual field. In the present experiments, however, a search for influences of real visual slant on VPSA to correspond to the influences of visual pitch on VPEL failed to find one. Although the elevation corresponding to VPEL changes linearly with the pitch of a visual field consisting of two isolated 66.5°-long pitched-from-vertical lines, the corresponding manipulation of change in the slant of either a horizontal two-line or a horizontal four-line visual field on VPSA did not occur. The average slope of the VPEL-versus-pitch function across 5 subjects was +0.40 over a ±30° pitch range, but was indistinguishable from 0.00 for the VPSA-versus-slant function over a ±30° slant range. Possible contributions to the difference between susceptibility of VPEL and VPSA to visual influence from extraretinal eye position information, gravity, and several retinal gradients are discussed.  相似文献   

2.
In two experiments, visually perceived eye level (VPEL) was measured while subjects viewed two-dimensional displays that were either upright or pitched 20 degrees top-toward or 20 degrees top-away from them. In Experiment 1, it was demonstrated that binocular exposure to a pair of pitched vertical lines or to a pitched random dot pattern caused a substantial upward VPEL shift for the top-toward pitched array and a similarly large downward shift for the top-away array. On the other hand, the same pitches of a pair of horizontal lines (viewed binocularly or monocularly) produced much smaller VPEL shifts. Because the perceived pitch of the pitched horizontal line display was nearly the same as the perceived pitch of the pitched vertical line and dot array, the relatively small influence of pitched horizontal lines on VPEL cannot be attributed simply to an underestimation of their pitch. In Experiment 2, the effects of pitched vertical lines, dots, and horizontal lines on VPEL were again measured, together with their effects on resting gaze direction (in the vertical dimension). As in Experiment 1, vertical lines and dots caused much larger VPEL shifts than did horizontal lines. The effects of the displays on resting gaze direction were highly similar to their effects on VPEL. These results are consistent with the hypothesis that VPEL shifts caused by pitched visual arrays are due to the direct influence of these arrays on the oculomotor system and are not mediated by perceived pitch.  相似文献   

3.
Li W  Matin L 《Perception》1998,27(5):553-572
Both the physical elevation that appears to correspond to eye level and the visually perceived pitch of a visual field are linear functions of the physical pitch of a normally illuminated, complexly structured visual field. One of the possible bases for the large effect of physical pitch on the elevation of visually perceived eye level (VPEL) is that the visual field generates a mental representation which specifies spatial coordinates and these determine the VPEL elevation ('implicit-surface model'; ISM). The influence on the elevation of VPEL is nearly as large when the visual field contains either one or two long pitched-from-vertical or rolled-from-vertical lines in otherwise total darkness as when it consists of a well-illuminated and complexly structured pitched room (L Matin and W Li, 1994 Vision Research 34 311-330), and, in order to examine the ISM, we employed a rolled-from-vertical, two-line configuration within a frontoparallel plane viewed in otherwise total darkness. Measurements of visually perceived pitch were made by a manual matching procedure and VPEL measurements were made by the psychophysical setting of the elevation of a small visual target to appear at eye level while each of three subjects viewed the two-line configuration at each of three horizontal eccentricities with the configuration at each of seven roll orientations. In direct contradiction to the ISM, the perceived pitch of the two-line configuration did not deviate significantly from the erect orientation ('vertical') for any roll at any eccentricity, but the elevation of VPEL changed systematically with the roll of the configuration both at left and at right eccentricities, and did not change at all with the two-line configuration centered on the median plane. Consistent with our previous work and with our previous interpretation regarding the basis for VPEL (L Matin and W Li, 1994 Vision Research 34 2577-2598), the variation of VPEL for the two-line visual field equals the average of the VPEL variations produced by viewing each of the single lines separately.  相似文献   

4.
Post BR  Teague JM  Welch RB  Hudson TE 《Perception》2003,32(9):1073-1092
Visually perceived eye level (VPEL) and perceived pitch were measured while subjects viewed two sets of stimuli that were either upright or pitched top-toward or top-away from them. The first set of stimuli, a pair of vertical lines viewed at various angles of pitch, caused systematic changes in perceived pitch and upward and downward VPEL shifts for the top-toward and top-away pitches, respectively. Neither the perceived pitch nor the VPEL measures with these stimuli differed between monocular and binocular viewing. The second set of stimuli was constructed so that, when viewed at the appropriate pitch angle, the projected orientations of the lines in the retinal image of each stimulus were similar to those generated by a pair of vertical lines pitched by a lesser amount in the opposite direction. When viewed monocularly, these stimuli appeared pitched in the direction opposite their physical pitch, yet produced VPEL shifts consistent with the direction of their physical pitch. These results clearly demonstrate a dissociation between perceived pitch and VPEL. The same stimuli, when viewed binocularly, appeared pitched in the direction of their physical pitch and caused VPEL shifts indistinguishable from those obtained monocularly. The retinal image orientations of these stimuli, however, corresponded to those of vertical line stimuli pitched in the opposite direction. This finding is therefore consistent with the hypothesis that VPEL and perceived pitch are processed independently, but inconsistent with the specific version of this hypothesis which states that differences in VPEL are determined solely on the basis of the orientation of lines in the retinal image.  相似文献   

5.
The pitch of a visual field systematically influences the elevation at which a monocularly viewing subject sets a target so as to appear at visually perceived eye level (VPEL). The deviation of the setting from true eye level averages approximately 0.6 times the angle of pitch while viewing a fully illuminated complexly structured visual field and is only slightly less with one or two pitched-from-vertical lines in a dark field (Matin & Li, 1994a). The deviation of VPEL from baseline following 20 min of dark adaptation reaches its full value less than 1 min after the onset of illumination of the pitched visual field and decays exponentially in darkness following 5 min of exposure to visual pitch, either 30° topbackward or 20° topforward. The magnitude of the VPEL deviation measured with the dark-adapted right eye following left-eye exposure to pitch was 85% of the deviation that followed pitch exposure of the right eye itself. Time constants for VPEL decay to the dark baseline were the same for same-eye and cross-adaptation conditions and averaged about 4 min. The time constants for decay during dark adaptation were somewhat smaller, and the change during dark adaptation extended over a 16% smaller range following the viewing of the dim two-line pitched-from-vertical stimulus than following the viewing of the complex field. The temporal course of light and dark adaptation of VPEL is virtually identical to the course of light and dark adaptation of the scotopic luminance threshold following exposure to the same luminance. We suggest that, following rod stimulation along particular retinal orientations by portions of the pitched visual field, the storage of the adaptation process resides in the retinogeniculate system and is manifested in the focal system as a change in luminance threshold and in the ambient system as a change in VPEL. The linear model previously developed to account for VPEL, which was based on the interaction of influences from the pitched visual field and extraretinal influences from the body-referenced mechanism, was employed to incorporate the effects of adaptation. Connections between VPEL adaptation and other cases of perceptual adaptation of visual direction are described.  相似文献   

6.
Earlier work described the presence of a significant connection between an individual's ability to disregard distracting aspects of a visual field in the classical rod-and-frame test (RFT), in which a subject is required to set a rod so that it will appear vertical in the presence of a square frame that is roll tilted from vertical, and in paper-and-pencil tests, in which the subject is required to find a hidden figure embedded in a more complex figure (the Embedded Figures Test [EFT]; see, e.g., Witkin, Dyk, Faterson, Goodenough, & Karp, 1962; Witkin et al., 1954; Witkin, Oltman, Raskin, & Karp, 1971). This has led to a belief in the existence of a bipolar dimension of cognitive style that is utilized in such disembedding tasks--namely, the extent to which an individual is dependent on or independent from the influence of a distracting visual field. The influence of an inducing visual field on the perception of elevation measured by the setting of a visual target to appear at eye level (the visually perceived eye level [VPEL] discrimination) has also been found to be correlated with the RFT. We have thus explored the possible involvement of the dependence/independence cognitive style on the VPEL discrimination. Measurements were made on each of 18 subjects (9 of them female, 9 male) setting a small target to the VPEL in the presence of a pitched visual field across a range of six pitches from -30 degrees (topbackward) to +20 degrees (topforward) and on each of three tests generally recognized as tests of cognitive spatial abilities: the EFT, the Gestalt Completion Test, and the Snowy Pictures Test (SPT). Although there were significant pairwise correlations relating performance on the three cognitive tests (+.73, +.48, and +.71), the correlation of each of these three with the slope of the VPEL-versus-pitch function was not significant, as it was with the slope of the perception of visual pitch of the field (PVP)-versus-pitch function. VPEL, PVP, and a cognitive factor separated into three essentially independent factors in a multiple-factor analysis, with the three cognitive tests clustering at the cognitive factor, and with no significant loading on either of the other two factors. From the above considerations and a multiple-factor analytic treatment including additional results from this and other laboratories, we conclude that the cognitive-processing style held to be involved in the performance on the EFT and the perception of vertical as measured by the RFT is not general for egocentric space perception; it does not involve the perception of elevation.  相似文献   

7.
Visually perceived eye level (VPEL) and the ability of subjects to reach with an unseen limb to targets placed at VPEL were measured in a statically pitched visual surround (pitchroom). VPEL was shifted upward and downward by upward and downward room pitch, respectively. Accuracy in reaching to VPEL represented a compromise between VPEL and actual eye level. This indicates that VPEL shifts reflect in part a change in perceived location of objects. When subjects were provided with terminal visual feedback about their reaching, accuracy improved rapidly. Subsequent reaching, with the room vertical, revealed a negative aftereffect (i.e., reaching errors that were opposite those made initially in the pitched room). In a second study, pointing accuracy was assessed for targets located both at VPEL and at other positions. Errors were similar for targets whether located at VPEL or elsewhere. Additionally, pointing responses were restricted to a narrower range than that of the actual target locations. The small size of reaching and pointing errors in both studies suggests that factors other than a change in perceived location are also involved in VPEL shifts.  相似文献   

8.
Auditory psychomotor coordination and visual search performance   总被引:2,自引:0,他引:2  
In Experiments 1 and 2, the time to locate and identify a visual target (visual search performance in a two-alternative forced-choice paradigm) was measured as a function of the location of the target relative to the subject's initial line of gaze. In Experiment 1, tests were conducted within a 260 degree region on the horizontal plane at a fixed elevation (eye level). In Experiment 2, the position of the target was varied in both the horizontal (260 degrees) and the vertical (+/- 46 degrees from the initial line of gaze) planes. In both experiments, and for all locations tested, the time required to conduct a visual search was reduced substantially (175-1,200 msec) when a 10-Hz click train was presented from the same location as that occupied by the visual target. Significant differences in latencies were still evident when the visual target was located within 10 degrees of the initial line of gaze (central visual field). In Experiment 3, we examined head and eye movements that occur as subjects attempt to locate a sound source. Concurrent movements of the head and eyes are commonly encountered during auditorily directed search behavior. In over half of the trials, eyelid closures were apparent as the subjects attempted to orient themselves toward the sound source. The results from these experiments support the hypothesis that the auditory spatial channel has a significant role in regulating visual gaze.  相似文献   

9.
Toth C  Kirk A 《Brain and cognition》2002,50(2):167-177
Normal subjects may have both representational and visual-based components determining bias in bisection of horizontal, vertical, and radial lines. The influence of these components is less clear in patients with neglect. We asked 25 patients with right hemisphere stroke and clinical features of neglect to bisect lines oriented horizontally, vertically, and radially above and below eye level. Objects including human silhouette figures, arrowheads, and the words 'TOP' and 'BOTTOM' were placed at either end of each line. These figures were presented either upright or upside down in some orientations, and presented rightward and leftward in other orientations, to pictorially or semantically define a "top" to each line independent of the actual top of the visual field. Patients demonstrated a rightward bias on all horizontal line bisections, with similar bias and greater magnitude than normal subjects. Patients also demonstrated visual-based biases on some of the vertical, radial down, and radial up lines presented. However, patients did not demonstrate a significant representational bias with any of the visual cues presented on any of the line orientations. Patients with acute right hemisphere stroke demonstrate a rightward bias when asked to perform line bisection in the horizontal line orientation, as well as an upward bias in vertical line bisection. The lack of representational bias in patients with neglect may be due to a greater degree of visual-based neglect as compared to representational neglect, or it may be due to an absence of representational bias in patients with right hemisphere stroke.  相似文献   

10.
The purpose of this study was to determine how the combined effects of a reference frame and of very low gravito-inertial forces produced by centrifugation affect the visually perceived eye level (VPEL). Twenty subjects were instructed to set a luminous target to the VPEL under various experimental conditions involving two main factors: (1) visual context (frameless, frame centered, frame moved down 50 mm, and frame moved up 50 mm) and (2) gravito-inertial context (motionless, Gi1=9.81001 m/sec2 and Gi2 = 9.95 m/sec2). The visual context significantly reduced the lowering of VPEL in darkness as caused by radial acceleration; this confirms the prevailing role of vision versus propriosomesthesis. However, under condition Gi2, there was a significant effect on the VPEL in spite of the presence of the luminous frame; this demonstrates that VPEL processing involves both visual and propriosomesthesic information. Furthermore, the VPEL varied linearly with the vertical shift of the luminous frame for any of the gravito-inertial conditions used in this study, but, under condition Gi2, the VPEL was shifted downward.  相似文献   

11.
The present investigation concerns the integrity of a primary mental function, the egocentric frame of reference and the sense of polarity of one's own head. The visually perceived eye level (VPEL) and the subjective antero-posterior axis of the head were measured by means of a visual indicator in darkness during two stimulus conditions: static pitch (sagittal-plane) tilting in the 1-g environment and gondola centrifugation (2G). It is demonstrated that an increase in the magnitude of the gravitoinertial (G) force, acting in the direction of the head and body long (z) axis, causes a substantial change not only in the VPEL but also in the perceived direction of the antero-posterior axis of the head.  相似文献   

12.
Afterimages of rivalrous vertical and horizontal lines were generated simultaneously in each eye. Either a horizontal and a vertical line or two vertical lines were presented to one eye with the complementary rivalrous pair to the other eye. Synchrony of line pairs presented to the same eye was longer than predicted on the basis of independence, irrespective of the monocular configuration. Furthermore, there appeared to be a facilitatory effect for lines of the same orientation if they were presented to one eye rather than combined from both eyes.  相似文献   

13.
Wu J  He ZJ  Ooi TL 《Perception》2005,34(9):1045-1060
The eye level and the horizontal midline of the body trunk can serve, respectively, as references for judging the vertical and horizontal egocentric directions. We investigated whether the optic-flow pattern, which is the dynamic motion information generated when one moves in the visual world, can be used by the visual system to determine and calibrate these two references. Using a virtual-reality setup to generate the optic-flow pattern, we showed that judged elevation of the eye level and the azimuth of the horizontal midline of the body trunk are biased toward the positional placement of the focus of expansion (FOE) of the optic-flow pattern. Furthermore, for the vertical reference, prolonged viewing of an optic-flow pattern with lowered FOE not only causes a lowered judged eye level after removal of the optic-flow pattern, but also an overestimation of distance in the dark. This is equivalent to a reduction in the judged angular declination of the object after adaptation, indicating that the optic-flow information also plays a role in calibrating the extraretinal signals used to establish the vertical reference.  相似文献   

14.
Ss judged the length of a horizontal line having vertical lines at the ends and a vertical line crossing at the middle. As has often been shown, judgments of the horizontal line varied inversely with the length of the vertical segments. One group of Ss were told to use the end lines as frame of reference and ignore the center line, and the estimated weights of end and center line were .22 and .02. The other group were told to ignore the end lines and use the center line as frame of reference. The weights of end and center line for this group were .06 and .22. It was concluded that the Helson AI. equations are valid, but that the weights of parts of the field are partly under voluntary control and are not simply a function of the visual field.  相似文献   

15.
When auditory stimuli are used in two-dimensional spatial compatibility tasks, where the stimulus and response configurations vary along the horizontal and vertical dimensions simultaneously, a right–left prevalence effect occurs in which horizontal compatibility dominates over vertical compatibility. The right–left prevalence effects obtained with auditory stimuli are typically larger than that obtained with visual stimuli even though less attention should be demanded from the horizontal dimension in auditory processing. In the present study, we examined whether auditory or visual dominance occurs when the two-dimensional stimuli are audiovisual, as well as whether there will be cross-modal facilitation of response selection for the horizontal and vertical dimensions. We also examined whether there is an additional benefit of adding a pitch dimension to the auditory stimulus to facilitate vertical coding through use of the spatial-musical association of response codes (SMARC) effect, where pitch is coded in terms of height in space. In Experiment 1, we found a larger right–left prevalence effect for unimodal auditory than visual stimuli. Neutral, non-pitch coded, audiovisual stimuli did not result in cross-modal facilitation, but did show evidence of visual dominance. The right–left prevalence effect was eliminated in the presence of SMARC audiovisual stimuli, but the effect influenced horizontal rather than vertical coding. Experiment 2 showed that the influence of the pitch dimension was not in terms of influencing response selection on a trial-to-trial basis, but in terms of altering the salience of the task environment. Taken together, these findings indicate that in the absence of salient vertical cues, auditory and audiovisual stimuli tend to be coded along the horizontal dimension and vision tends to dominate audition in this two-dimensional spatial stimulus–response task.  相似文献   

16.
The direction, latency, and form of the 1- and 2-month-old human infant’s saccadic eye movements toward peripheral targets were investigated. Infants of both ages reliably executed a directionally appropriate first saccade toward a peripheral target introduced as far as 30 deg from the line of sight along the horizontal and both diagonal axes, but only to 10 deg along the vertical axis. The presence of a second target in the central visual field reduced the probability of peripheral target localization. A significant inverse relation was found between target distance from the line of sight and probability of initiating a directionally appropriate saccade. Electro-oculography revealed that latency to first saccade, although highly variable, was less than 500 msec on a significant proportion of trials. Unlike the adult, the first saccade to target was grossly hypometric and was followed by one or more saccades of approximately equal amplitude to the first.  相似文献   

17.
The visually perceived eye level (VPEL) was measured during gondola centrifugation. Subjects (N = 11) were seated upright, facing motion in a swing-out gondola The head was adjusted so that Reid's baseline was tilted 10 degrees anterior end up. The subjects were requested to adjust the position of a small luminous dot so that it was perceived as gravitationally at eye level. In the 1-g environment, the VPEL was a few degrees below the true gravitational eye level (M = -1.75 degrees, SD = 1.90 degrees). After rapid acceleration of the centrifuge to 2 G (vectorial sum of the earth gravity force and the centrifugal force), there was an exponentially increasing depression of the VPEL. The initial value was -6.4 degrees +/- 5.2 degrees. During 10 min at 2 G, the VPEL approached an asymptotic value of -24.8 degrees +/- 5.4 degrees. The time constant showed a large interindividual variability, ranging from 59 to 1,000 sec (M = 261 sec, median = 147 sec). The findings are discussed, taking into consideration otolith-semicircular-canal interaction, as well as memory functions of the vestibular system.  相似文献   

18.
Measurements of the tilt illusion by parallelism matches have taken as their baseline data estimates of parallelism between two lines. This is because Carpenter and Blakemore and others found in this situation that parallel lines appeared to diverge at their upper ends. It was hypothesised that this effect was due to inappropriate constancy scaling-the parallel lines being interpreted as being located in a receding plane-and that consequently it was inappropriate to take this effect into account in assessing the degree of the tilt illusion. To test the theory, a horizontal line was compared with other horizontal and vertical lines lower down in the visual field. A tendency to underestimate the length of lines lower down in the visual field was found but this varied inversely with distance from the standard. The findings were accounted for on the assumption that the occurrence of inappropriate constancy scaling depended upon prior organization by contiguity which determined whether the two lines were taken as a group or not.  相似文献   

19.
Orientation-specific brightness aftereffects were found when vertical and horizontal gratings of the same space-average luminance were viewed following alternate exposure to vertical and horizontal gratings that differed in space-average luminance. The vertical test grating appeared bright following exposure to a dim vertical grating, and dim after a bright vertical grating had been viewed. This aftereffect did not occur when the adaptation gratings had been seen by one eye and the test gratings by the other eye. An orientation-specific illusion in the perception of brightness was also found, with the white sectors of a vertical grating appearing brighter against a background of horizontal lines than they did against a background of vertical lines. Both distortions imply that there are detectors in the human visual system that are conjointly tuned to luminance and contour orientation.  相似文献   

20.
Experiments 1 and 2 of this study show that when the target is either a vertical or a horizontal line, diagonal-line flankers tilted 45° either to the right or to the left have the same effect as do incongruent flankers. When the target is a diagonal line tilted either to the right or to the left, vertical- or horizontal-line flankers do not have the same effect as do incongruent flankers. Experiment 3 demonstrates that this asymmetry is not caused by the temporal-dynamic aspects of the processing. Together, these experiments suggest that there is an asymmetrical relation between diagonal lines and either vertical or horizontal lines otttside of the central focus of attention. Experiment 4 shows that despite this asymmetry in the flanker task, visual search for a vertical- or a horizontal-line target among diagonal-line distractors is not affected by the number of distractors. Possible explanations of this phenomenon are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号