首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This first test of the role of REM (rapid eye movement) sleep in reversal spatial learning is also the first attempt to replicate a much cited pair of papers reporting that REM sleep deprivation impairs the consolidation of initial spatial learning in the Morris water maze. We hypothesized that REM sleep deprivation following training would impair both hippocampus-dependent spatial learning and learning a new target location within a familiar environment: reversal learning. A 6-d protocol was divided into the initial spatial learning phase (3.5 d) immediately followed by the reversal phase (2.5 d). During the 6 h following four or 12 training trials/day of initial or reversal learning phases, REM sleep was eliminated and non-REM sleep left intact using the multiple inverted flowerpot method. Contrary to our hypotheses, REM sleep deprivation during four or 12 trials/day of initial spatial or reversal learning did not affect training performance. However, some probe trial measures indicated REM sleep-deprivation-associated impairment in initial spatial learning with four trials/day and enhancement of subsequent reversal learning. In naive animals, REM sleep deprivation during normal initial spatial learning was followed by a lack of preference for the subsequent reversal platform location during the probe. Our findings contradict reports that REM sleep is essential for spatial learning in the Morris water maze and newly reveal that short periods of REM sleep deprivation do not impair concurrent reversal learning. Effects on subsequent reversal learning are consistent with the idea that REM sleep serves the consolidation of incompletely learned items.  相似文献   

2.
Many behavioral and electrophysiological studies in animals and humans have suggested that sleep and circadian rhythms influence memory consolidation. In rodents, hippocampus-dependent memory may be particularly sensitive to sleep deprivation after training, as spatial memory in the Morris water maze is impaired by rapid eye movement sleep deprivation following training. Spatial learning in the Morris water maze, however, requires multiple training trials and performance, as measured by time to reach the hidden platform is influenced by not only spatial learning but also procedural learning. To determine if sleep is important for the consolidation of a single-trial, hippocampus-dependent task, we sleep deprived animals for 0–5 and 5–10 h after training for contextual and cued fear conditioning. We found that sleep deprivation from 0–5 h after training for this task impaired memory consolidation for contextual fear conditioning whereas sleep deprivation from 5–10 h after training had no effect. Sleep deprivation at either time point had no effect on cued fear conditioning, a hippocampus-independent task. Previous studies have determined that memory consolidation for fear conditioning is impaired when protein kinase A and protein synthesis inhibitors are administered at the same time as when sleep deprivation is effective, suggesting that sleep deprivation may act by modifying these molecular mechanisms of memory storage.  相似文献   

3.
Nurr1 expression is up-regulated in the brain following associative learning experiences, but its relevance to cognitive processes remains unclear. In these studies, rats initially received bilateral hippocampal infusions of control or antisense oligodeoxynucleotides (ODNs) 1 h prior to training in a holeboard spatial discrimination task. Such pre-training infusions of nurr1 antisense ODNs caused a moderate effect in learning the task and also impaired LTM tested 7 d later. In a second experiment, ODN infusions were given immediately after the animals had received two sessions of training, during which all animals showed normal learning. Although antisense treated rats were significantly impaired during the post-infusion stages of acquisition of the task, no group differences were observed during the LTM test given 7 d later. These animals were subjected 3 d later to reversal training in the same maze in the absence of any additional treatments. Remarkably, rats previously treated with antisense ODNs displayed perseveration: The animals were fixated with the previously learned pattern of baited holes, causing them to be significantly impaired in the extinction of acquired spatial preferences and future learning. We postulate that Nurr1 function in the hippocampus is important for normal cognitive processes.  相似文献   

4.
Caudate nucleus and memory for egocentric localization   总被引:5,自引:0,他引:5  
A large body of evidence suggests that the caudate nucleus (CN) plays a critical role in the processing of spatial localization information. Furthermore, evidence has begun to accumulate that the CN is involved in the processing of a very specific class of spatial cues, namely, egocentric cues (localization with reference to the organism). This is in contrast to allocentric localization, where an organism localizes on the basis of cues external to the organism. One would then predict that lesions to the CN should disrupt performance on any tasks that depend chiefly on egocentric spatial cues, while leaving performance on allocentric tasks intact. To test this prediction, two groups of rats were trained on two different egocentric memory tasks and two different allocentric memory tasks. Specifically, one group of rats was trained on an adjacent-arm (egocentric) and an 8-arm radial maze task (allocentric). A second group of rats was trained on a right-left discrimination (egocentric) and a place-learning task (allocentric). After training, both groups received bilateral lesions of the CN. Results showed that CN-lesioned animals were profoundly impaired on retention of the egocentric tasks. In sharp contrast to this, the same animals were not or were only transiently impaired or transiently affected on allocentric tasks. Sham-operated controls were either unimpaired or transiently affected on all tasks. These findings further support the idea that the CN plays a critical modulatory role in the processing of egocentric spatial and not allocentric spatial cues.  相似文献   

5.
Many studies in animals and humans suggest that sleep facilitates learning, memory consolidation, and retrieval. Moreover, sleep deprivation (SD) incurred after learning, impaired memory in humans, mice, rats, and hamsters. We investigated the importance of sleep and its timing in an object recognition task in OF1 mice subjected to 6h SD either immediately after the acquisition phase (0-6 SD) or 6h later (7-12 SD), and in corresponding undisturbed controls. Motor activity was continuously recorded with infrared sensors. All groups explored two familiar, previously encountered objects to a similar extent, both at the end of the acquisition phase and 24h later during the test phase, indicating intact familiarity detection. During the test phase 0-6 SD mice failed to discriminate between the single novel and the two familiar objects. In contrast, the 7-12 SD group and the two control groups explored the novel object significantly longer than the two familiar objects. Plasma corticosterone levels determined after SD did not differ from time-matched undisturbed controls, but were significantly below the level measured after learning alone. ACTH did not differ between the groups. Therefore, it is unlikely that stress contributed to the memory impairment. We conclude that the loss of sleep and the activities the mice engaged in during the SD, impaired recognition memory retrieval, when they occurred immediately after acquisition. The delayed SD enabled memory consolidation during the 6h when the mice were allowed to sleep, and had no detrimental effect on memory. Neither SD schedule impaired object familiarity processing, suggesting that only specific cognitive abilities were sensitive to the intervention. Sleep may either actively promote memory formation, or alternatively, sleep may provide optimal conditions of non-interference for consolidation.  相似文献   

6.
Wistar rats, treated with the GABA(A) receptor agonist muscimol, were used to investigate the role of the hippocampal-prelimbic cortical (Hip-PLC) circuit in spatial learning in the Morris water maze task, and in passive avoidance learning in the step-through task. In the water maze task, animals were trained for three consecutive days and tested 24 h after the end of training. In the step-through task, the animals were trained once and tested 24h after training. On the training days, daily infusion of muscimol (0.5 microg/0.25 microl) was given (1) bilaterally to the ventral hippocampus (vHip), (2) bilaterally to the prelimbic cortex (PLC), (3) to the unilateral vHip and the ipsilateral PLC, or (4) for disconnecting the Hip-PLC circuit, to both the unilateral vHip and the contralateral PLC 30 min before training. The results showed that inhibition of the vHip resulted in disruption of performance in both tasks. Inhibition of the PLC produced impaired water maze performance, but had no effect on the step-through task. Disconnection of the Hip-PLC circuit produced similar effects to PLC inhibition. However, simultaneous inhibition of the unilateral vHip and the ipsilateral PLC had little effect on performance of the water maze task. The results suggested that spatial learning depends on the Hip-PLC circuit, whereas passive avoidance learning is independent of this circuit.  相似文献   

7.
The present study examined the effects of ovariectomy and subsequent estradiol replacement on learning in young adult rats using a set of instrumental avoidance paradigms differing in the nature and extent of prior experience in the learning context. Thus, one group of animals was placed directly into avoidance learning (AV). A second group was trained on an appetitive task first, and then transferred into the aversive context (AP-AV). The third group was exposed to the training context without any specific appetitive response requirement, and then required to learn an active avoidance response (Context-AV). We found that estradiol (OVX+E) impaired avoidance acquisition in all cases relative ovariectomized controls (OVX). In contrast, while avoidance learning is improved following appetitive training or context exposure in both OVX+E and OVX animals, the OVX+E animals profit to a greater extent from the appetitive or context experience than do the OVX controls. We suggest that this difference may be due to enhanced attentional processes or improved hippocampal processing of contextual factors. Thus, estradiol negatively influences simple associative avoidance learning in ovariectomized rats, but appears to promote positive transfer.  相似文献   

8.
Using a latent learning paradigm, the experiments examine two hypotheses of how rats solve place navigation tasks. According to associative theory, experience with all relevant cues is required for accurate navigation. According to cognitive mapping theory, animals can generate novel trajectories from knowledge of spatial relations of objects in the environment. Rats that had been placed on a platform, which was submerged in a pool of opaque water and was moved each day, were tested later for their ability to find the platform using only surrounding room cues. One 30-sec exposure to a platform location was effective in improving performance. Improvement was greatest when tests were given within minutes of placement, but facilitation was obtained for as long as 4 hr. Improved performance was obtained as soon as rats acquired the procedural aspects of the task but did not increase with subsequent practice. Improved performance was also obtained when pre-trained rats were tested in a novel environment. Despite the advantage conferred by exposure to the target platform, test swims were not accurate, placement-induced improvement was not as great as that following a single swimming trial, and placement combined with a swim resulted in best performance. The results suggest that rats use associative learning processes rather than cognitive mapping to solve place problems in a swimming pool.  相似文献   

9.
The present study examined the effects of ovariectomy and subsequent estradiol replacement on learning in young adult rats using a set of instrumental avoidance paradigms differing in the nature and extent of prior experience in the learning context. Thus, one group of animals was placed directly into avoidance learning (AV). A second group was trained on an appetitive task first, and then transferred into the aversive context (AP-AV). The third group was exposed to the training context without any specific appetitive response requirement, and then required to learn an active avoidance response (Context-AV). We found that estradiol (OVX+E) impaired avoidance acquisition in all cases relative ovariectomized controls (OVX). In contrast, while avoidance learning is improved following appetitive training or context exposure in both OVX+E and OVX animals, the OVX+E animals profit to a greater extent from the appetitive or context experience than do the OVX controls. We suggest that this difference may be due to enhanced attentional processes or improved hippocampal processing of contextual factors. Thus, estradiol negatively influences simple associative avoidance learning in ovariectomized rats, but appears to promote positive transfer.  相似文献   

10.
In most mammalian species studied, two distinct and successive phases of sleep, slow wave (SW), and rapid eye movement (REM), can be recognized on the basis of their EEG profiles and associated behaviors. Both phases have been implicated in the offline sensorimotor processing of daytime events, but the molecular mechanisms remain elusive. We studied brain expression of the plasticity-associated immediate-early gene (IEG) zif-268 during SW and REM sleep in rats exposed to rich sensorimotor experience in the preceding waking period. Whereas nonexposed controls show generalized zif-268 down-regulation during SW and REM sleep, zif-268 is upregulated during REM sleep in the cerebral cortex and the hippocampus of exposed animals. We suggest that this phenomenon represents a window of increased neuronal plasticity during REM sleep that follows enriched waking experience.  相似文献   

11.
Recently, the vasopressin (AVP) innervation in the rat brain was shown to be restored in senescent rats following long-term testosterone administration. In order to investigate whether this restoration is accompanied by an improvement in learning and memory, both sham- and testosterone-treated young (4.5 months), middle-aged (20 months), and aged (31 months) male Brown-Norway rats were tested in a Morris water maze. All animals learned to localize a cued platform equally well, indicating that the ability to learn this task was not affected by sensory, motoric, or motivational changes with aging or testosterone treatment. There were no significant differences in retention following cue training. Subsequent training with a hidden platform in the opposite quadrant of the pool (place training) revealed impaired spatial learning in middle-aged and aged animals. Retention following place training was significantly impaired in the sham-treated aged rats as compared with sham-treated young rats. Testosterone treatment did not improve spatial learning nor retention of spatial information, but, on the contrary, impaired retention in young and middle-aged animals. The present results confirm earlier reports on an impairment of spatial learning and memory in senescent rats but fail to support a role of decreased plasma testosterone levels and central AVP innervation in this respect.  相似文献   

12.
Using a radial maze task and different postoperative recovery periods, this experiment assessed and compared the reference and working memory performances of adult Long-Evans male rats subjected to entorhinal cortex, fimbria-fornix, and hippocampus lesions. Sham-operated rats were used as controls. In order to see whether the duration of the postsurgical recovery period would influence acquisition of the complex radial maze task, training began 1 month following surgery (Delay 1) for half the rats in each group, while for the other half training was started 6.5 months following surgery (Delay 2). The results indicated that at both recovery periods the entorhinal cortex lesions failed to affect either working or reference memory in the spatial task. Conversely, both fimbria-fornix and hippocampus lesions impaired both reference and working memory. While the reference memory deficit was generally similar in both fimbria-fornix and hippocampal lesion groups, analysis of the results for working memory indicated that at the longer delay rats with fimbria-fornix lesions were still impaired but in animals that had the hippocampus removed, working memory did not differ from that of controls. These results suggest that there was some recovery in those rats with hippocampal lesions (e.g., on the working memory task) but both hippocampal and fimbria-fornix animals were still impaired compared to controls when training was delayed 6.5 months following the operations.  相似文献   

13.
Understanding animals’ spatial perception is a critical step toward discerning their cognitive processes. The spatial sense is multimodal and based on both the external world and mental representations of that world. Navigation in each species depends upon its evolutionary history, physiology, and ecological niche. We carried out foraging experiments on wild vervet monkeys (Chlorocebus pygerythrus) at Lake Nabugabo, Uganda, to determine the types of cues used to detect food and whether associative cues could be used to find hidden food. Our first and second set of experiments differentiated between vervets’ use of global spatial cues (including the arrangement of feeding platforms within the surrounding vegetation) and/or local layout cues (the position of platforms relative to one another), relative to the use of goal-object cues on each platform. Our third experiment provided an associative cue to the presence of food with global spatial, local layout, and goal-object cues disguised. Vervets located food above chance levels when goal-object cues and associative cues were present, and visual signals were the predominant goal-object cues that they attended to. With similar sample sizes and methods as previous studies on New World monkeys, vervets were not able to locate food using only global spatial cues and local layout cues, unlike all five species of platyrrhines thus far tested. Relative to these platyrrhines, the spatial location of food may need to stay the same for a longer time period before vervets encode this information, and goal-object cues may be more salient for them in small-scale space.  相似文献   

14.
Previously, we reported that posttraining paradoxical sleep deprivation (PSD) resulted in an enhancement of the subsequent avoidance performance for rats trained for 15 trials in a Y-maze brightness avoidance discrimination task. A series of experiments were conducted to try to further understand the reasons for results which were contrary to those of the bulk of the sleep-learning literature. Experiment 1 investigated the effectiveness of the PSD technique. Rats (N= 4) were sleep recorded while residing on a “swimming pool” apparatus for 24 h. Compared to their baseline values, all animals showed a very large reduction in paradoxical sleep and spent significantly more time awake. Slow-wave sleep was unchanged. In Experiment 2, proactive motor effects were tested. Rats were deprived of PS for 24 h and then tested in a hole board motor activity task. There was a slight effect of PS deprivation on the day following the PSD and no effect when the rats were retested 1 week later. Experiment 3 investigated possible proactive effects of PSD on avoidance performance. Rats exposed to PSD in the 24 h before training in the Y-maze task did not demonstrate any facilitative effect on the subsequent avoidance performance. Experiment 4 investigated the possibility that the PSD facilitative effect could be due to partial training. Rats were given 75 acquisition trials in the brightness discrimination Y-maze avoidance before being subjected to 24 h of PSD. PS-deprived animals showed superior avoidance scores compared to non-PSD controls when retested 24 h later. In Experiment 5, the same strain of rats (N= 11) were sleep recorded after exposure to a partial acquisition in a Y-maze brightness avoidance discrimination task. They were then continuously monitored for 4 consecutive days. The percent PS for the Trained rats was significantly lower than that for the Control animals. This drop in percent PS was not confined to any particular time period in the 24-h day. None of the other sleep parameters reached significance. Analyses of the present results suggest that PSD exerts its facilitative effects on posttraining consolidation processes. We present arguments suggesting that PSD can have effects opposite to those generally reported, in animals demonstrating poor avoidance abilities, in an avoidance task.  相似文献   

15.
Periadolescent rats exhibit a number of behavioral differences in comparison with younger or older animals. For instance, periadolescents tend to show enhanced acquisition of simple active avoidance tasks, but impaired acquisition of more complex appetitive and aversive discriminations. In this experiment, rats were trained on a simple passive avoidance task at one of three ages, as weanlings (25 days), periadolescents (35 days), or young adults (45 days). Training occurred in the presence of both a redundant discriminative stimulus and a specified, redundant contextual stimulus. The periadolescents did not differ from either younger or older rats in rate of learning the passive avoidance task. The retention performance of these animals was then tested following a change in either, neither, or both of the redundant cues. When a measure of performance that controls for baseline activity was used, it was observed that periadolescents were not disrupted by a change in the redundant discriminative stimulus, a cue change that clearly disrupted performance in 25- and 45-day-old animals, and tended to be more disrupted by the contextual change than younger or older rats. It is hypothesized that the alterations in performance exhibited by periadolescents may be related to an ontogenetic alteration in stimulus selection modulated by the catecholaminergic systems.  相似文献   

16.
Learning, attentional, and perseverative deficits are characteristic of cognitive aging. In this study, genetically diverse CD-1 mice underwent longitudinal training in a task asserted to tax working memory capacity and its dependence on selective attention. Beginning at 3 mo of age, animals were trained for 12 d to perform in a dual radial-arm maze task that required the mice to remember and operate on two sets of overlapping guidance (spatial) cues. As previously reported, this training resulted in an immediate (at 4 mo of age) improvement in the animals' aggregate performance across a battery of five learning tasks. Subsequently, these animals received an additional 3 d of working memory training at 3-wk intervals for 15 mo (totaling 66 training sessions), and at 18 mo of age were assessed on a selective attention task, a second set of learning tasks, and variations of those tasks that required the animals to modify the previously learned response. Both attentional and learning abilities (on passive avoidance, active avoidance, and reinforced alternation tasks) were impaired in aged animals that had not received working memory training. Likewise, these aged animals exhibited consistent deficits when required to modify a previously instantiated learned response (in reinforced alternation, active avoidance, and spatial water maze). In contrast, these attentional, learning, and perseverative deficits were attenuated in aged animals that had undergone lifelong working memory exercise. These results suggest that general impairments of learning, attention, and cognitive flexibility may be mitigated by a cognitive exercise regimen that requires chronic attentional engagement.  相似文献   

17.
In Stage 1 of 4 experiments in which rats completed a water-maze blocking procedure, experimental groups were trained to use a predictive beacon (hanging above, connected to, or displaced from the platform) to find a submerged escape platform in the presence of predictive or irrelevant background cues and in the presence or absence of irrelevant landmarks. In Stage 2, a fixed beacon, landmarks, and background cues all predicted the platform location. A Room Test (landmarks and background cues only) showed that Stage 1 training with a fixed hanging beacon or the moving displaced beacon facilitated Stage 2 learning of predictive room cues for experimental relative to control subjects. In contrast, Stage 1 training with a moving pole beacon interfered with Stage 2 learning about predictive room cues relative to controls, whereas training with a fixed pole or moving hanging beacon had no effect. We conclude that multiple spatial learning processes influence locating an escape platform in the water maze.  相似文献   

18.
To study the learning performance of pentylenetetrazol- and amygdala-kindled Wistar rats we used the following learning tests: short-term memory was tested in the response-to-change model, brightness discrimination was tested in a Y-chamber, and two-way active avoidance learning was tested in a shuttle-box. Short-term memory was not impaired by both kindling procedures. Considering two-way active avoidance learning the performance of pentylenetetrazol (PTZ)-kindled rats was significantly diminished. This effect persists over a period of 4 weeks. However, amygdala (AMY)-kindled rats acquired this task like the controls. In brightness discrimination reaction (BDR) the learning performance of PTZ-kindled animals was not influenced. Although the acquisition of BDR was nearly identical, the 24-h retention was remarkably diminished in AMY-kindled rats. It was hypothesized that the different kindling procedures interfere in different ways and extent with neuronal circuits resulting in different functional impairments.  相似文献   

19.
The group of papers on memory reactivation and consolidation during sleep included in this volume represents cutting edge work in both animals and humans. They support that the two types of sleep serve different necessary functions. The role of slow wave sleep (SWS) is reactivation of the hippocampal-neocortical circuits activated during a waking learning period, while REM sleep is responsible for the consolidation of this new learning into long-term memory. These studies provide further insights into mechanisms involved in brain plasticity. Robeiro has demonstrated the upregulation of an immediate-early gene (IEG zif 268) to waking levels, which occurs only in REM and only in connection with new learning. McNaughton and his group have identified electrical indicators that the hippocampus and neocortex are talking to each other by testing the coactivation of hippocampal sharp wave bursts in SWS and shifts from down to up states of activation in the neocortex. In human studies Smith's group reports work on individual differences such as intelligence and presleep alcohol that affect postsleep performance, and Stickgold and collaborators report that a short nap will improve performance if it contains REM sleep. Payne and Nadel suggest that the recall benefit associated with REM sleep may be due to its association with increased cortisol levels. These papers are important not only in their individual contributions but also in revitalizing the work coordinating waking and sleep. This promises to further the understanding of how our unique capacity to learn from experience and modify our behavior takes place.  相似文献   

20.
Male and female Fischer 344 rats, 12 or 26-28 months of age, received two sessions of Pavlovian heart rate conditioning, and were compared with same-sex and same-age controls receiving unpaired presentations of the tone conditional stimulus (CS) and the shock unconditional stimulus (US). Older rats of both sexes demonstrated slower acquisition of the heart rate (HR) conditioned response (CR), and smaller magnitude changes than did the younger animals. Control experiments in 6-, 12-, 24-, and 30-month-old animals indicated that these differences were not due to an impaired sensitivity to the CS or US in the older animals. Results are discussed in terms of their implications for use of this animal model in investigations of age-related deficits in associative learning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号