首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Attempts were made to further analyze the role of 5-HT1A receptors in consolidation of learning by evaluating the role of these receptors in cognitively normal and impaired animals. The effects of post-training administration of 8-OH-DPAT and 5-HT1A receptor antagonists, WAY 100135, WAY 100635, and S-UH-301, plus the cholinergic and glutamatergic antagonists, scopolamine and dizolcipine, respectively, were determined using an autoshaping learning task. The results showed that 8-OH-DPAT increased the number of conditioned responses, whereas WAY100135, WAY100635, and S-UH-301, and the 5-HT depleter, p-chloroamphetamine (PCA), had no effect. PCA did not change the silent properties of the 5-HT1A receptor antagonists. PCA, WAY100635, and S-UH-301, but not GR127935 (a 5-HT1B/1D-receptor antagonist) or MDL100907 (a 5-HT2A receptor antagonist), reversed the effect to 8-OH-DPAT. Ketanserin (a 5-HT2A/2C receptor antagonist) and ondansetron (a 5-HT3 receptor antagonist), at a dose that increased the conditioned responses by itself, reversed the effect of 8-OH-DPAT. Moreover, 8-OH-DPAT or S-UH-301 reversed the learning deficit induced by scopolamine and dizocilpine whereas WAY100635 reversed the effect of scopolamine only. These data confirm a role for presynaptic 5-HT1A receptors during the consolidation of learning and support the hypothesis that serotonergic, cholinergic, and glutamatergic systems interact in cognitively impaired animals.  相似文献   

2.
Reinforcement of rat hippocampal LTP by holeboard training   总被引:4,自引:0,他引:4       下载免费PDF全文
Hippocampal long-term potentiation (LTP) can be dissociated in early-LTP lasting 4-5 h and late-LTP with a duration of more than 8 h, the latter of which requires protein synthesis and heterosynaptic activity during its induction. Previous studies in vivo have shown that early-LTP in the dentate gyrus can protein synthesis-dependently be transformed (reinforced) into late-LTP by the association of arousing novel environmental stimuli. Here we show that consolidation of spatial memory also reinforces early-LTP in the dentate gyrus. Both memory consolidation and LTP-reinforcement depend on protein synthesis. Four groups of animals were trained by five, seven, eight or 10 trials, respectively, to recognize a fixed pattern of baited holes. The last trial was performed 15 min after tetanus. Errors of long-term reference memory during the last trial were significantly decreased only in the eight- and 10-trial experimental groups compared to pseudo-trained animals. In correlation to this learning effect we found a reinforcement of early-LTP only in these experimental groups compared to controls. The data suggest that the synthesis of new proteins required for spatial reference-memory formation also contributes to LTP maintenance in the hippocampal dentate gyrus.  相似文献   

3.
Hippocampal EEG, GABAergic interneurons, and principal cells were recorded simultaneously as rats foraged within one of three environments both before and after modulation of serotonergic inputs to the hippocampus. Median raphe microinjections of the 5-HT1a receptor agonist 8-OH-DPAT were made to produce inhibition of serotonergic neurons in this region. Such microinjections produced behavioral arousal and increases in the amplitude of hippocampal EEG theta. Consistent with the pattern of serotonergic innervation of the hippocampus, the GABAergic interneuron population was affected differentially by the microinjections. Principal cells were generally unaffected by the manipulation and maintained robust spatial firing correlates within the foraging environment. The results provide basic data on the relationship between serotonergic median raphe neurons and hippocampal activity in a behaving animal. The data suggest that behavioral responses to manipulation of the serotonergic system are mediated by brain regions other than the hippocampus or are mediated through changes in the activity of hippocampal interneurons.  相似文献   

4.
Do serotonin1–7 receptors modulate short and long-term memory?   总被引:1,自引:0,他引:1  
Evidence from invertebrates to human studies indicates that serotonin (5-hydroxytryptamine; 5-HT) system modulates short- (STM) and long-term memory (LTM). This work is primarily focused on analyzing the contribution of 5-HT, cholinergic and glutamatergic receptors as well as protein synthesis to STM and LTM of an autoshaping learning task. It was observed that the inhibition of hippocampal protein synthesis or new mRNA did not produce a significant effect on autoshaping STM performance but it did impair LTM. Both non-contingent protein inhibition and 5-HT depletion showed no effects. It was basically the non-selective 5-HT receptor antagonist cyproheptadine, which facilitated STM. However, the blockade of glutamatergic and cholinergic transmission impaired STM. In contrast, the selective 5-HT(1B) receptor antagonist SB-224289 facilitated both STM and LTM. Selective receptor antagonists for the 5-HT(1A) (WAY100635), 5-HT(1D) (GR127935), 5-HT(2A) (MDL100907), 5-HT(2C/2B) (SB-200646), 5-HT(3) (ondansetron) or 5-HT(4) (GR125487), 5-HT(6) (Ro 04-6790, SB-399885 and SB-35713) or 5-HT(7) (SB-269970) did not impact STM. Nevertheless, WAY100635, MDL100907, SB-200646, GR125487, Ro 04-6790, SB-399885 or SB-357134 facilitated LTM. Notably, some of these changes shown to be independent of food-intake. Concomitantly, these data indicate that '5-HT tone via 5-HT(1B) receptors' might function in a serial manner from STM to LTM, whereas working in parallel using 5-HT(1A), 5-HT(2A), 5-HT(2B/2C), 5-HT(4), or 5-HT(6) receptors.  相似文献   

5.
The perforant path projecting from the entorhinal cortex to the hippocampal dentate gyrus is a particularly vulnerable target to the early deposition of amyloid beta (Abeta) peptides in Alzheimer's brain. The authors previously showed that brief applications of Abeta at subneurotoxic concentrations suppressed the early-phase long-term potentiation (E-LTP) in rat dentate gyrus. The current study further examines the effect of Abeta on the late-phase LTP (L-LTP) in this area. Using multiple high-frequency stimulus trains, a stable L-LTP lasting for at least 3 h was induced in the medial perforant path of rat hippocampal slices. Bath application of Abeta(1-42) (0.2-1.0 microM) during the induction trains attenuated both the initial and late stages of L-LTP. On the other hand, Abeta(1-42) perfusion within the first hour following the induction primarily impaired the late stage of L-LTP, which resembled the action of the protein synthesis inhibitor emetine. Blockade of calcineurin activity with FK506 or cyclosporin A completely prevented Abeta-induced L-LTP deficits. These results suggest that Abeta(1-42) impaired both the induction and maintenance phase of dentate L-LTP through calcineurin-dependent mechanisms. In the concentration range effective for inhibiting L-LTP, Abeta(1-42) also reduced the amplitude of NMDA receptor-mediated synaptic currents in dentate granule cells via a postsynaptic mechanism. In addition, concurrent applications of Abeta(1-42) with the protein synthesis inhibitor caused no additive reduction of L-LTP, indicating a common mechanism underlying the action of both. Thus, inhibition of NMDA receptor channels and disruption of protein synthesis were two possible mechanisms contributing to Abeta-induced L-LTP impairment.  相似文献   

6.
Growing evidence suggests that processes of synaptic plasticity, such as long-term potentiation (LTP) occurring in one synaptic population, can be modulated by consolidating afferents from other brain structures. We have previously shown that an early-LTP lasting less than 4 h (E-LTP) in the dentate gyrus can be prolonged by stimulating the basolateral amygdala, the septum or the locus coeruleus within a specific time window. Pharmacological experiments have suggested that noradregeneric (NE) and/or cholinergic systems might be involved in these effects. We have therefore investigated whether the direct intraventricular application of agonists for NE- or muscarinic receptors is able to modulate synaptic plasticity. E-LTP was induced at the dentate gyrus of freely moving rats using a mild tetanization protocol that induces only an E-LTP. NE or oxotremorine (OXO) were applied icv 10 min after the tetanus. Results show that low doses of NE (1.5 and 5 nM) effectively prolong LTP. A higher dose (50 nM) was not effective. None of the OXO doses employed (5, 25, and 50 nM) showed similar effects. These results stress the importance of transmitter-specific modulatory influences on the time course of synaptic plasticity, in particular NE whose application mimics the reinforcing effect of directly stimulating limbic structures on LTP.  相似文献   

7.
We have measured depolarization-induced release of endogenous glutamate in synaptosomes prepared from the dentate gyrus after the induction of LTP by high-frequency stimulation in anesthetized rats, and after training in the water maze. Both spatial training and LTP in untrained rats were accompanied by an increase in glutamate release from dentate synaptosomes. The enhancement of synaptosomal glutamate release induced by high-frequency stimulation was abolished in well-trained rats, and was reduced in partially trained rats and in rats trained in a nonspatial task. However, the magnitude of LTP was similar in well-trained and untrained groups. These results indicate that spatial training activates a glutamate release pathway that converges with that activated in LTP, and demonstrate an unexpected dissociation between increased glutamate release and LTP.  相似文献   

8.
Previous experiments in the hippocampal CA1 area have shown that corticosterone can facilitate long-term potentiation (LTP) in a rapid non-genomic fashion, while the same hormone suppresses LTP that is induced several hours after hormone application. Here, we elaborated on this finding by examining whether corticosterone exerts opposite effects on LTP depending on the timing of hormone application in the dentate gyrus as well. Moreover, we tested rapid and delayed actions by corticosterone on β-adrenergic-dependent changes in LTP. Unlike the CA1 region, our in vitro field potential recordings show that rapid effects of corticosterone do not influence LTP induced by mild tetanization in the hippocampal dentate gyrus, unless GABAA receptors are blocked. In contrast, the β-adrenergic agonist isoproterenol does initiate a slow-onset, limited amount of potentiation. When corticosterone was applied concurrently with isoproterenol, a further enhancement of synaptic strength was identified, especially during the early stage of potentiation. Yet, treatment with corticosterone several hours in advance of isoproterenol fully prevented any effect of isoproterenol on LTP. This emphasizes that corticosterone can regulate β-adrenergic modulation of synaptic plasticity in opposite directions, depending on the timing of hormone application.  相似文献   

9.
问黎敏  安书成  刘慧 《心理学报》2012,44(10):1318-1328
为探讨慢性不可预见性温和应激(chronic unpredictable mild stress, CUMS)诱发抑郁样行为发生中海马5-羟色胺1A受体(5-hydroxytryptamine receptor 1A, 5-HT1AR)表达与作用, 及其对谷氨酸N-甲基-D-天冬氨酸(N-methyl-D-aspartic acid, NMDA)受体和α-氨基羟甲基异恶唑丙酸(α-amino-3-hydroxy-5- methylisoxazole-4-propionic acid, AMPA)受体的影响。通过建立CUMS动物模型, 给应激抑郁模型大鼠海马微量注射5-HT1A受体激动剂、给正常大鼠海马微量注射5-HT1A受体拮抗剂, 测量大鼠体重变化率, 并采用糖水偏爱测试、旷场实验和悬尾实验等方法对大鼠进行行为学检测, 运用Western blot和ELISA方法检测大鼠海马组织中5-HT1AR和NMDAR和AMPAR的关键亚基的表达以及磷酸化水平。结果显示, 与对照组相比, CUMS组大鼠表现出抑郁样行为, 海马5-HT1AR、AMPA受体的GluR2/3亚基表达及磷酸化明显降低, NMDA受体的NR1和NR2B亚基表达及磷酸化显著增加; 正常大鼠海马微量注射5-HT1A受体拮抗剂WAY100635, 动物行为学表现及AMPA受体、NMDA受体表达及磷酸化水平均与CUMS组相同; 注射5-HT1A受体激动剂8-OH-DPAT能逆转应激诱导的上述改变。以上结果表明, CUMS诱发抑郁样行为与海马5-HT1AR表达下降, AMPAR表达量及磷酸化水平降低, NMDAR表达量及磷酸化水平升高有关。5-HT通过5-HT1AR产生抗抑郁作用。5-HT1AR激动剂抗抑郁作用与降低NMDAR表达量及磷酸化水平, 提高AMPAR表达量及磷酸化水平密切相关。  相似文献   

10.
Glutamatergic hypofunction occurs in Alzheimer's disease (AD). MK801, a noncompetitive blocker of glutamate N-methyl-D-aspartate receptors, was used to disrupt the cognitive performance of rats trained on a delayed nonmatching to sample radial maze task. Drugs which act by blocking serotonin (5-HT) receptors were evaluated for their ability to reduce the cognitive impairment produced by MK801. Specifically, WAY-100635, a selective 5-HT1A receptor antagonist, buspirone, a 5-HT1A partial agonist, ritanserin, a 5-HT2 antagonist, and ondansetron, a 5-HT3 antagonist, were assessed. In addition, the muscarinic agonist arecoline was evaluated for its potential cognitive benefit in this model. It was found that WAY-100635 significantly reduced the cognitive impairment induced by MK801. Treatment with single doses of ritanserin, ondansetron, or arecoline in combination with MK801 did not result in a cognitive impairment, indicating that these drugs attenuated the MK801 impairment. The combination of buspirone and MK801 resulted in an inability of the animals to complete the task. These results suggest that interactions between 5-HT and glutamate may mediate the beneficial effects of reducing cognitive impairment and that 5-HT antagonists, especially selective 5-HT1A antagonists, may be useful in treating AD. Further, it is indicated that the MK801 model of cognitive impairment may add to the armamentarium of tools available to predict treatment efficacy in AD.  相似文献   

11.
Extensive literature has demonstrated that arousal and fear modify memory acquisition and consolidation. Predator hair and odors increase arousal in rats and, therefore, may influence information encoding and synaptic plasticity in the rodent nervous system. In behavioral experiments, we confirm that laboratory-bred Long Evans rats avoid cat hair. Electrophysiological work in vivo showed that long-term potentiation (LTP) in the dentate gyrus induced by perforant path stimulation was enhanced for 5-7 days when LTP induction occurred in the presence of cat hair relative to fake hair. The muscarinic receptor antagonist scopolamine (i.p.) reversed the cat hair-elicited LTP enhancement without affecting weaker LTP elicited in the presence of fake hair. Thus, exposure to a predator stimulus elicits a cholinergically-dependent state of heightened plasticity that may serve to facilitate information storage in hippocampal circuits.  相似文献   

12.
Previously it has been shown that single episode of 2 h restraint produced behavioral deficits in rats which were not observed following daily restraint period of 2h/day for 5 days. It was suggested that adaptation to a stress schedule develops when the similar stress is administered repeatedly. In view of a role of 5-hydroxytryptamine (5-HT) in adaptation to stress the present study concerns effects of a 5-HT-1A agonist 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT) on the synthesis of 5-HT in brain regions of rats adapted to a repeated restraint stress schedule of 2h/day for 5 days. The drug injected systemically at a dose of 1 mg/kg decreased 5-HT synthesis in the hypothalamus, cortex, hippocampus, striatum and raphe regions of previously unrestrained rats. These decreases were either smaller (raphe) or not observed (hypothalamus, cortex and hippocampus) in most brain regions of rats adapted to the repeated restraint stress schedule of 2h/day for 5 days. These results suggest that a subsensitive negative feedback effect on the synthesis of 5-HT leading to an increase in synaptic 5-HT concentration might help coping with stress demand to produce adaptation to stress.  相似文献   

13.
Muricidal behavior induced in rats by social isolation or by olfactory bulb ablation was blocked following IP administration of serotonin (5–HT) agonist 8-OH-DPAT and 5-MeODM and by 5-HT uptake inhibitors, fluoxetine and indalpine. Among uptake inhibitors, although fluoxetine has a higher IC50 and a higher Ki, it is apparently more efficient than indalpine. The 5-HT agonist, 8-OH-DPAT, acting at a putative 5-HT1A receptor, appears more efficient on muricidal inhibition than 5-MeODM, at a much lower dosage. It is highly probable that 5-HT1A receptor rather than 5-HT1B is involved in the antimuricidal effect of serotonin-mimetic drugs. Since 5-HT mimetic drugs blocked mouse-killing behavior of bulbectomized rats, we suggest that in the sequence of events in muricidal inhibition 5-HT circuits participate after gabaergic modulation from olfactory bulbs.  相似文献   

14.
Emotionality as well as cognitive abilities contribute to the acquisition and retrieval of memories as well as to the consolidation of long-term potentiation (LTP), a cellular model of memory formation. However, little is known about the timescale and relative contribution of these processes. Therefore, we tested the effects of weak water maze training, containing both emotional and cognitive demands, on LTP in the hippocampal dentate gyrus. The population spike amplitude (PSA)-LTP was prolonged in all rats irrespective of whether they memorized the platform position or not, whereas the field excitatory postsynaptic potential (fEPSP)-LTP was impaired in good learners and enhanced in poor learners. We then dissociated the behavioral performance of rats during the water maze task by principal component analysis and by means of stress hormone concentrations into underlying "emotional" and "cognitive" factors. PSA-LTP was associated with "emotional" and fEPSP-LTP with "cognitive" behavior. PSA-LTP was depotentiated after the blockade of corticosterone binding mineralocorticoid receptors (MRs) in trained animals, while fEPSP-LTP was unaffected. These results suggest that synaptic processing and encoding of emotional information in the hippocampal dentate gyrus is realized fast and further information transfer is detectable by the reinforcement of PSA-LTP, whereas that of cognitive memories is long lasting.  相似文献   

15.
Recent studies using both invertebrates and mammals have revealed that endogenous serotonin (5-hydroxytryptamine [5-HT]) modulates plasticity processes, including learning and memory. However, little is currently known about the mechanisms, loci, or time window of the actions of 5-HT. The aim of this review is to discuss some recent results on the effects of systemic administration of selective agonists and antagonists of 5-HT on associative learning in a Pavlovian/instrumental autoshaping (P/I-A) task in rats. The results indicate that pharmacological manipulation of 5-HT1-7 receptors or 5-HT reuptake sites might modulate memory consolidation, which is consistent with the emerging notion that 5-HT plays a key role in memory formation.  相似文献   

16.
The present study adopts an ethoexperimental approach to examine the deportment subsequent to alteration in serotonin (5-HT) neurotransmission following treatment with site-specific neuropharmacological probes. The impact of perturbation in (5-HT) neurotransmission on baseline behavior was analyzed employing three animal models of anxiety, i.e., hole-board, elevated plus maze, and bright/dark arena. Inbred male rats (Wistar strain, weighing between 150 and 200 g) were used in this study. The vivarium and the behavioral laboratory were specially designed to permit operation of reversed light-dark cycle and all experiments were performed during the dark period. Pharmacological tools selected to influence 5-HT levels include (1) a combination of tranylcypromine and tryptophan (TCP + TRYPT) (0.75 mg/kg + 40 mg/kg) which augments 5-HT biosynthesis; (2) p-chlorophenylalanine (PCPA: 200 mg/kg), an inhibitor of 5-HT biosynthesis; and (3) 5-HT reuptake blockers, namely zimelidine (ZIM) (40 mg/kg) and fluoxetine (FLU) (10 mg/kg). Rats under the influence of PCPA exhibited anxiolytic response, whereas those under treatments to raise 5-HT levels, viz., TCP + TRYPT, ZIM and FLU, displayed anxiogenic-like reactions. Several other agents known to specifically interact with 5-HT receptor subtypes were also tested. 5-HT2 receptor stimulants, such as quipazine (5 mg/kg) and MK 212 (0.5 mg/kg), were found to be anxiogenic. Buspirone (2 mg/kg), a 5-HT1 agonist, surmounted normal behavioral inhibition. However, another 5-HT1 stimulant, 8-OH-DPAT (0.025 mg/kg), had anxiogenic action. Pretreatment with 5-HT3 antagonists [zacopride (2 mg/kg) and GR 38032F (0.1 mg/kg)] and putative 5-HT1 antagonist [propranolol (10 mg/kg)] resulted in borderline disinhibition of normal behavioral inhibition to novel environments. In contrast, cyproheptadine (0.5 mg/kg), a 5-HT2 antagonist, provoked anxiogenic-like behavior. Altogether, uniform results were obtained for each probe in all the three models, suggesting that the battery of anxiety tests chosen in this study is reliable and sensitive to detect unknown pharmacological responses. The results support the hypothesis that stimulation of serotonergic neurotransmission heightens normal anxiety, whereas its blockade releases normal behavioral inhibition. Furthermore, this work establishes the validity of using the three paradigms in evaluating the involvement of multiple neurotransmitter receptors in the control of behavior of rodents under natural circumstances and also detects any aberration following exposure to novelty and stress.  相似文献   

17.
Down syndrome (DS) is a genetic disorder arising from the presence of a third copy of the human chromosome 21 (Hsa21). Recently, O’Doherty and colleagues in an earlier study generated a new genetic mouse model of DS (Tc1) that carries an almost complete Hsa21. Since DS is the most common genetic cause of mental retardation, we have undertaken a detailed analysis of cognitive function and synaptic plasticity in Tc1 mice. Here we show that Tc1 mice have impaired spatial working memory (WM) but spared long-term spatial reference memory (RM) in the Morris watermaze. Similarly, Tc1 mice are selectively impaired in short-term memory (STM) but have intact long-term memory (LTM) in the novel object recognition task. The pattern of impaired STM and normal LTM is paralleled by a corresponding phenotype in long-term potentiation (LTP). Freely-moving Tc1 mice exhibit reduced LTP 1 h after induction but normal maintenance over days in the dentate gyrus of the hippocampal formation. Biochemical analysis revealed a reduction in membrane surface expression of the AMPAR (α-amino-3-hydroxy-5-methyl-4-propionic acid receptor) subunit GluR1 in the hippocampus of Tc1 mice, suggesting a potential mechanism for the impairment in early LTP. Our observations also provide further evidence that STM and LTM for hippocampus-dependent tasks are subserved by parallel processing streams.  相似文献   

18.
Long-term synaptic enhancement in the hippocampus has been suggested to cause deficits in spatial performance. Synaptic enhancement has been reported after hippocampal kindling that induced repeated electrographic seizures or afterdischarges (ADs) and after long-term potentiation (LTP) defined as synaptic enhancement without ADs. We studied whether repeated stimulations that gave LTP or ADs resulted in spatial performance deficits on the radial arm maze (RAM) and investigated the minimal number of ADs required for such deficits. Three experimental groups were run as follows: (1) 5 hippocampal ADs in 1 d (5-AD group), (2) 10 hippocampal ADs in 2 d (10-AD group), and (3) 12 -frequency primed-burst stimulations (PBSs) in 2 d in order to induce LTP without ADs (LTP group). Each experimental group was run together with a control group during the same time period. Rats were first trained in a spatial task on a radial arm maze with four of the eight arms baited, then given control or experimental treatment, and maze performance was tested in the first week (1-4 d) and fourth week (22-25 d) after treatment. Basal dendritic population excitatory postsynaptic potentials (pEPSPs) and medial perforant path (MPP)-evoked dentate gyrus population spike and polysynaptic CA1 excitation were recorded before and after experimental and control treatment. Spatial memory errors, in particular reference memory errors, were significantly higher in the 10-AD kindled group than any other group on the first and fourth week after treatment. Spatial memory errors were not significantly different in the 5-AD and LTP groups as compared with any control groups at any time. Basal dendritic pEPSP in CA1 was enhanced for about 1 wk after 12 PBSs, 10 ADs, or 5 ADs, while the dentate gyrus population spike and CA1 polysynaptic excitation evoked by MPP was increased for up to 4 wk after 10 ADs, but not 12 PBSs. Thus, distributed alteration of multiple synaptic transmission in the entorhinal-hippocampal circuit, but not LTP at the basal dendritic synapses in CA1, may disrupt spatial performance after 10 hippocampal ADs.  相似文献   

19.
The serotonin 5-HT4 subtype receptor is predominantly localized into anatomical structures linked to memory and cognition. A few experimental studies report that the acute systemic administration of selective 5-HT4 agonists has ameliorative effects on memory performance, and that these effects are reversed by contemporary administration of 5-HT4 receptor antagonists. To verify whether this procognitive action occurs via the activation of the cholinergic nucleus basalis magnocellularis (NBM)-cortical pathways, we examined the effects of RS67333, a selective partial agonist of the 5-HT4 receptor, on rat performance in a place recognition task upon local administration of the drug into the NBM area. The intra-NBM administration of RS67333 enhances the acquisition (200-500 ng/0.5 microL) and the consolidation (40-200 ng/0.5 microL) of the place recognition memory. These effects are reversed by pretreatment with the selective 5-HT4 receptor antagonist RS39604 (300 ng/0.5 microL). Conversely, the recall of memory is not affected by the 5-HT4 agonist. Our results indicate that 5-HT4 receptors located within the NBM may play a role in spatial memory and that the procognitive effect of RS67333 is due, at least in part, to the potentiation of the activity of cholinergic NBM-cortical pathways.  相似文献   

20.
The effects of chronic novel stressors, for 21 days, on the behavior and the serotoninergic (5-HT) system in Sprague-Dawley (SD) and Wistar Kyoto (WKY) rats were studied. Open-field and forced-swim tests revealed a significantly greater behavioral depression in the WKY strain. SD rats showed a decrease in3H-DPAT binding to 5-HT1A receptors in the hippocampus, whereas WKY rats revealed an increase in3H-DPAT binding in the hippocampus and hypothalamus. Stress did not appear to alter the binding of3H-DPAT to 5-HT1A sites in the dorsal raphe or median raphe in either strains. SD rats revealed a modest increase in 5-HT transporter (5-HTT) sites in the cortex; WKY rats revealed a decrease in 5-HTT sites in the cortex and the hippocampus. Stress caused an increase in3H-CNIMI binding to 5-HTT sites in the dorsal and median raphe nuclei in both strains. The results suggest that the greater susceptibility to behavioral depression in WKY rats may account for the differential effects on 5HT1A sites as well as 5-HTT sites in limbic regions and cell body area as compared to SD rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号