首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study examined the impact of age-related differences in regional cerebral volumes and cognitive resources on acquisition of a cognitive skill. Volumes of brain regions were measured on magnetic resonance images of healthy adults (aged 22-80). At the early stage of learning to solve the Tower of Hanoi puzzle, speed and efficiency were associated with age, prefrontal cortex volume, and working memory. A similar pattern of brain-behavior associations was observed with perseveration measured on the Wisconsin Card Sorting Test. None of the examined structural brain variables were important at the later stages of skill acquisition. When hypertensive participants were excluded, the effect of prefrontal shrinkage on executive aspects of performance was no longer significant, but the effect of working memory remained.  相似文献   

2.
大量研究表明, 前额叶的结构和功能更容易受年老化影响; 然而, 近年来的研究发现, 前额叶的结构和功能在老年阶段具有一定的可塑性。对老年人进行认知训练, 能够延缓前额叶皮层厚度的萎缩, 提高白质完整性, 改善神经网络的功能连接和分化, 并可能通过调节多巴胺系统的活动改变前额叶皮质和皮质下结构的功能激活模式。有氧锻炼能够改善心脑血管功能, 保护和促进神经元的存活和生长, 引起前额叶灰质、白质体积的增加及功能激活的变化。认知训练与有氧锻炼等相结合的整合性训练不仅引起前额叶及相关认知功能的改变, 而且具有更好的生态学效度, 使老年人日常认知能力和生活质量得到提高。未来研究应采用多种技术手段, 从多个层面理解老年阶段前额叶的可塑性及相关机制; 加强对与前额叶关系密切的多种认知功能可塑性神经机制的研究; 并重视与整合性训练有关的前额叶可塑性。  相似文献   

3.
老年执行功能的认知可塑性和神经可塑性   总被引:3,自引:0,他引:3  
杜新  陈天勇 《心理科学进展》2010,18(9):1471-1480
执行衰退假说认为执行功能的特异性衰退是引起认知年老化的主要原因, 近年来越来越多的研究表明, 老年人的执行功能及其相关脑区(主要为前额叶)存在可塑性, 通过训练执行功能的衰退可得到缓解, 且相关脑区的激活水平、脑容量或神经递质都可发生改变; 部分研究还发现执行功能训练对其它认知能力有一定的迁移效应。这些发现对于认知年老化理论的继续探索和认知干预研究的实践应用都具有重要意义。  相似文献   

4.
The regulation of affective arousal is a critical aspect of children’s social and cognitive development. However, few studies have examined the brain mechanisms involved in the development of this aspect of “hot” executive functioning. This process has been conceptualized as involving prefrontal control of the amygdala. Here, using functional magnetic resonance imaging (fMRI), we investigated the brain mechanisms involved in the development of affective regulation in typically developing 5- to 11-year-olds and an adult comparison sample. Children and adults displayed differing patterns of increased anterior cingulate cortex and decreased amygdala activation during episodes in which emotion regulation was required. Specifically, amygdala activation increased in adults but decreased in children during recovery from a frustrating episode. In addition, we used effective connectivity analyses to investigate differential correlations between key emotional brain areas in response to the regulatory task demands. We found reliable increases in effective connectivity between the anterior cingulate cortex and the amygdala during periods of increased demand for emotion regulation. This effective connectivity increased with age.  相似文献   

5.
Although evidence suggests that the dorsal striatum contributes to multiple learning and memory functions, there nevertheless remains considerable disagreement on the specific associative roles of different neuroanatomical subregions. We review evidence indicating that the dorsolateral striatum (DLS) is a substrate for stimulus–response habit formation – incremental strengthening of simple SR bonds – via input from sensorimotor neocortex while the dorsomedial striatum (DMS) contributes to behavioral flexibility – the cognitive control of behavior – via prefrontal and limbic circuits engaged in relational and spatial information processing. The parallel circuits through dorsal striatum interact with incentive/affective motivational processing in the ventral striatum and portions of the prefrontal cortex leading to overt responding under specific testing conditions. Converging evidence obtained through a detailed task analysis and neurobehavioral assessment is beginning to illuminate striatal subregional interactions and relations to the rest of the mammalian brain.  相似文献   

6.
本研究随机挑选了15名因外伤而造成的前额叶损害者和15名正常成人,采用韦氏成人智力量表和自编的图片分类作业,考查了他们在一般智力、认知策略与自我监控能力方面的差异,研究结果表明:(1)前额叶损害对个体的一般智力产生显著的影响,但是其智力仍然处于正常范围,可见智力的脑结构范围极为广泛,智力是一个具有多重性的系统。(2)前额叶损害者对无关刺激的抑制,对有效信息的提取与加工放大的心理活动受到极大影响,认知策略转换能力明显低于正常人,表现出了明显的认知不随意性,额叶可能更多的与个体的计划、认知策略选择、自我监控密切相关;(3)前额叶损害者对具体概念与抽象概念的自我监控能力表现出了不同的影响,对前者的损害显著大于后者,这表明个体依据具体概念进行的形象思维与凭借抽象概念进行的逻辑思维有不同的脑机制。  相似文献   

7.
For over four decades the Wisconsin Card Sorting Test (WCST) has been one of the most distinctive tests of prefrontal function. Clinical research and recent brain imaging have brought into question the validity and specificity of this test as a marker of frontal dysfunction. Clinical studies with neurological patients have confirmed that, in its traditional form, the WCST fails to discriminate between frontal and non-frontal lesions. In addition, functional brain imaging studies show rapid and widespread activation across frontal and non-frontal brain regions during WCST performance. These studies suggest that the concept of an anatomically pure test of prefrontal function is not only empirically unattainable, but also theoretically inaccurate. The aim of the present review is to examine the causes of these criticisms and to resolve them by incorporating new methodological and conceptual advances in order to improve the construct validity of WCST scores and their relationship to prefrontal executive functions. We conclude that these objectives can be achieved by drawing on theory-guided experimental design, and on precise spatial and temporal sampling of brain activity, and then exemplify this using an integrative model of prefrontal function [i.e., Miller, E. K. (2000). The prefrontal cortex and cognitive control. Nature Reviews Neuroscience, 1, 59–65.] combined with the formal information theoretical approach to cognitive control [Koechlin, E., & Summerfield, C. (2007). An information theoretical approach to prefrontal executive function. Trends in Cognitive Sciences, 11, 229–235.].  相似文献   

8.
数字加工的认知神经基础   总被引:7,自引:1,他引:6  
数学作为人类最重要的发明,越来越引起认知神经科学家的重视与关注,究竟什么才是人类数学知识的脑基础?脑成像的研究已经证实了一个参与数学运算加工的神经网络,包括顶叶皮质、侧前额叶皮质、内前额叶皮质、和小脑。实验证明:人脑对于数字具有一种模拟表达,类似于将数量在脑内部作为一种内心的数字线上的点来操作。神经心理学的研究证实数字加工的这种数量表达分布于两半球,其优势区位于下顶叶皮质区。  相似文献   

9.
A well‐established literature demonstrates executive function (EF) deficits in obese children and adults relative to healthy weight comparisons. EF deficits in obesity are associated with overeating and impulsive consumption of high calorie foods leading to excess weight gain and to problems with metabolic regulation and low‐grade inflammation that detrimentally affect the structure and function of prefrontal cortex. Here, we test a complementary explanation for the relation between EF and body mass index (BMI) grounded in the energy demand of the developing brain. Recent work shows that the brain accounts for a lifetime peak of 66% of resting metabolic rate in childhood and that developmental changes in brain energetics and normative changes in body weight gain are closely inversely related. This finding suggests a trade‐off in early childhood between energy used to support brain development versus energy used to support physical growth and fat deposition. To test this theorized energetic trade‐off, we analyzed data from a large longitudinal sample (N = 1,292) and found that change in EF from age 3 to 5 years, as a proxy for brain development in energetically costly prefrontal cortex, is inversely related to change in BMI from age 2 to 5 years. Greater linear decline in BMI predicted greater linear increase in EF. We interpret this finding as tentative support for a brain–body energetic trade‐off in early childhood with implications for lifetime obesity risk.  相似文献   

10.
The authors investigated neural substrates of age-related declines in mental imagery. Healthy adult participants (ages 19 to 77) performed a series of visual-spatial mental imagery tasks that varied in apparent difficulty and involved stimuli of varying graphic complexity. The volumes of the dorsolateral frontal cortex (DLPFC) and posterior visual processing areas were estimated from magnetic resonance imaging scans. The volume of the DLPFC and the fusiform cortex, working-memory capacity, and performance on the tasks involving image generation and manipulation were significantly reduced with age. Further analyses suggested that age-related deficits in performance on mental imagery tasks may stem in part from age-related shrinkage of the prefrontal cortex and age-related declines in working memory but not from age-related slowing of sensorimotor reaction time. The volume of cortical regions associated with modality-specific visual information processing did not show a consistent relationship with specific mental imagery processes.  相似文献   

11.
时间认知的脑机制研究   总被引:6,自引:2,他引:4  
从神经心理学和脑成像2个领域综述了有关时间认知脑机制的研究。神经心理学及脑损伤的研究结果表明小脑可能与内部时钟功能有关,前额叶可能调节时间认知中的注意过程。PET和fMRI脑成象研究结果显示,基底神经节、小脑和前额叶在所有的计时作业中都被激活。ERP的研究结果还证实,时间信息加工和非时间信息加工存在时间历程上的差异,并且时间信息加工还存在的显著半球优势效应。因此基底神经节、小脑和前额叶可能是时间认知的主要脑机制,但由于研究材料、方法和程序的不同,大脑皮层的广泛区域都有可能参与时间信息的加工。  相似文献   

12.
The neuropsychological bases of cognitive, social, and moral development are minimally understood, with a seemingly wide chasm between developmental theories and brain maturation models. As one approach to bridging ideas in these areas, we review 10 cases of early prefrontal cortex damage from the clinical literature, highlighting overall clinical profiles and real life developmental outcomes. Based on these cases, there is preliminary evidence to support distinctive developmental differences after: (1) dorsolateral, (2) mesial, and (3) orbital-polar prefrontal lesions, for more profound impairments after bilateral damage, and possibly for recovery differences after very early vs. later childhood lesion onset. Further case and group studies are needed to confirm reliable effects of specific lesion locations, the influence of age of lesion onset, and related experiential and treatment variables in determining adult outcomes. Rather than a single underlying deficit associated with early prefrontal cortex damage, we interpret the findings to suggest that it is the altered integration and interplay of cognitive, emotional, self-regulatory, and executive/metacognitive deficits that contribute to diverse developmental frontal lobe syndromes. The findings support the fundamental importance of prefrontal cortex maturation in protracted cognitive, social-emotional, and moral development.  相似文献   

13.
When two events co-occur within a specific time interval, some people experience ‘meaningful coincidence’. This may be a consequence of the mind searching for causal structure in reality. In cases of negative events, it may be a coping strategy for managing stress. The present voxel-based morphometry (VBM) study investigated neural correlates of the propensity to experience meaningful coincidence (PEMC). VBM data from 115 females (mean age: 26 years) were correlated with self-reported PEMC and the use of certain coping strategies (e.g. seeking support, positive focusing). PEMC was negatively correlated with grey matter volume (GMV) in the medial prefrontal cortex, the inferior frontal gyrus, and the superior/inferior parietal cortex. Moderation analyses indicated that the negative association between GMV in the mentioned brain regions and PEMC was only present in participants with average or below-average coping skills. The identified fronto-parietal regions are part of an integrated neural network implicated in the detection of causality and cognitive control.  相似文献   

14.
To investigate the impact of the microdeletion on morphology of the prefrontal cortex in 22q11.2 Deletion Syndrome (22q11.2 DS), high-resolution, anatomic magnetic resonance imaging was performed on 19 children and adolescents with 22q11.2 DS (11 females, 8 males) and 18 unaffected controls (10 females, 8 males). Tissue volumes of the dorsolateral, dorsomedial, orbitolateral, and orbitomedial prefrontal cortex were measured. Tasks of executive function and working memory were administered to investigate the association between anatomy and function. Whole brain volume and frontal lobe tissue volume were preserved in girls but reduced in boys with 22q11.2 DS relative to age-matched controls. Dorsolateral prefrontal cortex (DLPFC) volumes were reduced in participants with 22q11.2 DS, although the gender-by-diagnosis effect found for frontal lobe was not as robust for DLPFC. DLPFC volumes were associated with performance on tasks of planning and emotional facial recognition. Longitudinal studies are needed to clarify whether gender differences in frontal lobe and DLPFC persist with development, and whether the volumes of the DLPFC are associated with eventual deterioration in adaptive/psychosocial function that may presage the onset of schizophrenia, for which individuals with 22q11.2 DS are at a disproportionately high risk.  相似文献   

15.
To investigate the impact of the microdeletion on morphology of the prefrontal cortex in 22q11.2 Deletion Syndrome (22q11.2 DS), high-resolution, anatomic magnetic resonance imaging was performed on 19 children and adolescents with 22q11.2 DS (11 females, 8 males) and 18 unaffected controls (10 females, 8 males). Tissue volumes of the dorsolateral, dorsomedial, orbitolateral, and orbitomedial prefrontal cortex were measured. Tasks of executive function and working memory were administered to investigate the association between anatomy and function. Whole brain volume and frontal lobe tissue volume were preserved in girls but reduced in boys with 22q11.2 DS relative to age-matched controls. Dorsolateral prefrontal cortex (DLPFC) volumes were reduced in participants with 22q11.2 DS, although the gender-by-diagnosis effect found for frontal lobe was not as robust for DLPFC. DLPFC volumes were associated with performance on tasks of planning and emotional facial recognition. Longitudinal studies are needed to clarify whether gender differences in frontal lobe and DLPFC persist with development, and whether the volumes of the DLPFC are associated with eventual deterioration in adaptive/psychosocial function that may presage the onset of schizophrenia, for which individuals with 22q11.2 DS are at a disproportionately high risk.  相似文献   

16.
Bilingualism is a typical linguistic experience, yet relatively little is known about its impact on children's cognitive and brain development. Theories of bilingualism suggest that early dual‐language acquisition can improve children's cognitive abilities, specifically those relying on frontal lobe functioning. While behavioral findings present much conflicting evidence, little is known about its effects on children's frontal lobe development. Using functional near‐infrared spectroscopy (fNIRS), the findings suggest that Spanish–English bilingual children (= 13, ages 7–13) had greater activation in left prefrontal cortex during a non‐verbal attentional control task relative to age‐matched English monolinguals. In contrast, monolinguals (= 14) showed greater right prefrontal activation than bilinguals. The present findings suggest that early bilingualism yields significant changes to the functional organization of children's prefrontal cortex for attentional control and carry implications for understanding how early life experiences impact cognition and brain development.  相似文献   

17.
Classic cognitive theory conceptualizes executive functions as involving multiple specific domains, including initiation, inhibition, working memory, flexibility, planning, and vigilance. Lesion and neuroimaging experiments over the past two decades have suggested that both common and unique processes contribute to executive functions during higher cognition. It has been suggested that a superordinate fronto–cingulo–parietal network supporting cognitive control may also underlie a range of distinct executive functions. To test this hypothesis in the largest sample to date, we used quantitative meta-analytic methods to analyze 193 functional neuroimaging studies of 2,832 healthy individuals, ages 18–60, in which performance on executive function measures was contrasted with an active control condition. A common pattern of activation was observed in the prefrontal, dorsal anterior cingulate, and parietal cortices across executive function domains, supporting the idea that executive functions are supported by a superordinate cognitive control network. However, domain-specific analyses showed some variation in the recruitment of anterior prefrontal cortex, anterior and midcingulate regions, and unique subcortical regions such as the basal ganglia and cerebellum. These results are consistent with the existence of a superordinate cognitive control network in the brain, involving dorsolateral prefrontal, anterior cingulate, and parietal cortices, that supports a broad range of executive functions.  相似文献   

18.
Developmental studies have demonstrated that cognitive processes such as attention, suppression of interference and memory develop throughout childhood and adolescence. However, little is currently known about the development of top-down control mechanisms and their influence on cognitive performance. In the present study, we used functional magnetic resonance imaging to investigate modulation of activity in the ventral visual cortex in healthy 7–11-year-old children and young adults. The participants performed tasks that required attention to either face (Fs task) or scene (Sf task) images while trying to ignore distracting scene or face images, respectively. A face-selective area in the fusiform gyrus (fusiform face area, FFA) and an area responding preferentially to scene images in the parahippocampal gyrus (parahippocampal place area, PPA) were defined using functional localizers. Children responded slower and less accurately in the tasks than adults. In children, the right FFA was less selective to face images and regulation of activity between the Fs and Sf tasks was weaker compared to adults. In the PPA, selectivity to scenes and regulation of activity, there according to the task demands were comparable between children and adults. During the tasks, children activated prefrontal cortical areas including the middle (MFG) and superior (SFG) frontal gyrus more than adults. Functional connectivity between the right FFA and left MFG was stronger in adults than children in the Fs task. Children, on the other hand, had stronger functional connectivity than adults in the Sf task between the right FFA and right PPA and between right MFG and medial SFG. There were no group differences in the functional connectivity between the PPA and the prefrontal cortex (PFC). Together the results suggest that, in 7–11-year-old children, the FFA is still immature, whereas the selectivity to scenes and regulation of activity in the PPA is comparable to adults. The results also indicated functional immaturity of the PFC in children compared to adults and weaker connectivity between the PFC and the rFFA, explaining the weaker regulation of activity in the rFFA between the Fs and Sf tasks.  相似文献   

19.
The lateralization of cognitive abilities is influenced by a number of factors, including handedness, sex, and developmental maturation. To date, a small number of studies have examined sex differences in the lateralization of cognitive and affective functions, and in only few of these have the developmental trajectories of these lateralized differences been mapped from childhood through early adulthood. In the present study, a cross-sectional design was used with healthy children (n=7), adolescents (n= 12), and adults (n= 10) who underwent functional magnetic resonance imaging (fMRI) during a task that required perceiving fearful faces. Males and females differed in the asymmetry of activation of the amygdala and prefrontal cortex across the three age groups. For males, activation within the dorsolateral prefrontal cortex was bilateral in children, right lateralized in adolescents, and bilateral in adults, whereas females showed a monotonic relationship with age, with older females showing more bilateral activation than younger ones. In contrast, amygdala activation was similar for both sexes, with bilateral activation in children, right-lateralized activation in adolescents, and bilateral activation in adults. These results suggest that males and females show different patterns of lateralized cortical and subcortical brain activation across the period of development from childhood through early adulthood.  相似文献   

20.
Hypertension affects many older adults and is associated with impaired neural and cognitive functioning. We investigated whether a history of hypertension was associated with impairments to prospective memory, which refers to the ability to remember to perform delayed intentions, such as remembering to take medication. Thirty-two cognitively normal older adult participants with or without a history of hypertension (self-reported) performed two laboratory prospective memory tasks, one that relied more strongly on executive control (nonfocal prospective memory) and one that relied more strongly on spontaneous memory retrieval processes (focal prospective memory). We observed hypertension-related impairments for nonfocal, but not focal, prospective memory. To complement our behavioral approach, we conducted a retrospective analysis of available structural magnetic resonance imaging data. Lower white matter volume estimates in the anterior prefrontal cortex were associated with lower nonfocal prospective memory and with a history of hypertension. A history of hypertension may be associated with worsened executive control and lower prefrontal white matter volume. The translational implication is that individuals who must remember to take antihypertensive medications and to monitor their blood pressure at home may be impaired in the executive control process that helps to support these prospective memory behaviors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号