首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We created a novel eye movement version of the n-back task to measure spatial working memory (WM). Rather than one continuous trial, discrete trials were presented in order to develop a simpler WM task. In Experiment 1, we varied the visibility of the final stimulus to maximize the difference in performance between 0-back and 1-back tasks (WM effect). In Experiment 2, we administered the optimized task to children. In Experiment 3, we further simplified the task. Both adults and children easily completed our task, displaying significant WM effects. Further, similar WM effects were obtained in our original and simplified n-back spatial WM tasks, demonstrating flexibility. Because WM deficits are often an early feature of disease and a marker of disease progression, our saccadic measure of spatial WM may be particularly useful in hard-to-test populations, such as patients and children, and may have application in brain-imaging studies that require discrete trials.  相似文献   

2.
A growing literature suggests that working memory and attention are closely related constructs. Both involve the selection of task-relevant information, and both are characterized by capacity limits. Furthermore, studies using a variety of methodological approaches have demonstrated convergent working memory and attention-related processing at the individual, neural and behavioral level. Given the varieties of both constructs, the specific kinds of attention and WM must be considered. We find that individuals' working memory capacity (WMC) uniquely interacts with feature-based attention when combined with spatial attention in a cuing paradigm (Posner, 1980). Our findings suggest a positive correlation between WM and feature-based attention only within the spotlight of spatial attention. This finding lends support to the controlled attention view of working memory by demonstrating that integrated feature-based expectancies are uniquely correlated with individual performance on a working memory task.  相似文献   

3.
Spatial selective attention and spatial working memory have largely been studied in isolation. Studies of spatial attention have provided clear evidence that observers can bias visual processing towards specific locations, enabling faster and better processing of information at those locations than at unattended locations. We present evidence supporting the view that this process of visual selection is a key component of rehearsal in spatial working memory. Thus, although working memory has sometimes been depicted as a storage system that emerges 'downstream' of early sensory processing, current evidence suggests that spatial rehearsal recruits top-down processes that modulate the earliest stages of visual analysis.  相似文献   

4.
5.
This paper reviews the recent findings on working memory, attention and eye movements. We discuss the research that shows that many phenomena related to visual attention taking place when selecting relevant information from the environment are similar to processes needed to keep information active in working memory. We discuss new data that show that when retrieving information from working memory, people may allocate visual spatial attention to the empty location in space that used to contain the information that has to be retrieved. Moreover, we show that maintaining a location in working memory not only may involve attention rehearsal, but might also recruit the oculomotor system. Recent findings seem to suggest that remembering a location may involve attention-based rehearsal in higher brain areas, while at the same time there is inhibition of specific motor programs at lower brain areas. We discuss the possibility that working memory functions do not reside at a special area in the brain, but emerge from the selective recruitment of brain areas that are typically involved in spatial attention and motor control.  相似文献   

6.
Decaro MS  Thomas RD  Beilock SL 《Cognition》2008,107(1):284-294
We examined whether individual differences in working memory influence the facility with which individuals learn new categories. Participants learned two different types of category structures: rule-based and information-integration. Successful learning of the former category structure is thought to be based on explicit hypothesis testing that relies heavily on working memory. Successful learning of the latter category structure is believed to be driven by procedural learning processes that operate largely outside of conscious control. Consistent with a widespread literature touting the positive benefits of working memory and attentional control, the higher one’s working memory, the fewer trials one took to learn rule-based categories. The opposite occurred for information-integration categories - the lower one’s working memory, the fewer trials one took to learn this category structure. Thus, the positive relation commonly seen between individual differences in working memory and performance can not only be absent, but reversed. As such, a comprehensive understanding of skill learning - and category learning in particular - requires considering the demands of the tasks being performed and the cognitive abilities of the performer.  相似文献   

7.
We report an eyetracking study investigating the effects of linguistic focus on eye movements and memory during two readings of a text. Across two presentations of the text, a critical word either changed to a semantically related word or remained unchanged. Focus on the critical word was manipulated using context. Eye movements were monitored during reading, and there was a secondary task of detecting the word change. Results indicated that when a word changed, participants were more successful at detecting it when it was in focus. In the second display, there were more fixations and longer viewing times on a changed than on an unchanged word, but only when the critical word was in focus; eye movement data for changed and unchanged words did not differ when the word was not in focus. We suggest that linguistic focus leads to more detailed lexical semantic representations but not more effortful initial encoding of information.  相似文献   

8.
The selective disruption of spatial working memory by eye movements   总被引:2,自引:0,他引:2  
In the late 1970s/early 1980s, Baddeley and colleagues conducted a series of experiments investigating the role of eye movements in visual working memory. Although only described briefly in a book (Baddeley, 1986), these studies have influenced a remarkable number of empirical and theoretical developments in fields ranging from experimental psychology to human neuropsychology to nonhuman primate electrophysiology. This paper presents, in full detail, three critical studies from this series, together with a recently performed study that includes a level of eye movement measurement and control that was not available for the older studies. Together, the results demonstrate several facts about the sensitivity of visuospatial working memory to eye movements. First, it is eye movement control, not movement per se, that produces the disruptive effects. Second, these effects are limited to working memory for locations and do not generalize to visual working memory for shapes. Third, they can be isolated to the storage/maintenance components of working memory (e.g., to the delay period of the delayed-recognition task). These facts have important implications for models of visual working memory.  相似文献   

9.
In the late 1970s/early 1980s, Baddeley and colleagues conducted a series of experiments investigating the role of eye movements in visual working memory. Although only described briefly in a book (Baddeley, 1986 Baddeley AD 1986 Working memory London Oxford University Press  [Google Scholar]), these studies have influenced a remarkable number of empirical and theoretical developments in fields ranging from experimental psychology to human neuropsychology to nonhuman primate electrophysiology. This paper presents, in full detail, three critical studies from this series, together with a recently performed study that includes a level of eye movement measurement and control that was not available for the older studies. Together, the results demonstrate several facts about the sensitivity of visuospatial working memory to eye movements. First, it is eye movement control, not movement per se, that produces the disruptive effects. Second, these effects are limited to working memory for locations and do not generalize to visual working memory for shapes. Third, they can be isolated to the storage/maintenance components of working memory (e.g., to the delay period of the delayed-recognition task). These facts have important implications for models of visual working memory.  相似文献   

10.
In this study, we investigate how exogenous and endogenous orienting of spatial attention affect visuospatial working memory (VSWM). Specifically, we focused on two attentional effects and their consequences on storage in VSWM, when exogenous (Experiment 1) or endogenous (Experiment 2) orienting cues were used. The first effect, known as the meridian effect, is given by a decrement in behavioural performance when spatial cues and targets are presented in locations separated by vertical and/or horizontal meridians. The second effect, known as the distance effect, is given by a decrement in the orienting effects as a function of the spatial distance between cues and targets. Our results revealed a dissociation between exogenous and endogenous orienting mechanisms in terms of both meridian and distance effects. We found that meridian crossing affects performance only when endogenous cues were used. Specifically, VSWM performance with endogenous cueing depended more on the number of meridian crossings than on distance between cue and target. By contrast, a U-shaped distance dependency was observed using exogenous cues. Our findings therefore suggest that exogenous and endogenous orienting mechanisms lead to different forms of attentional bias for storage in VSWM.  相似文献   

11.
The contents of working memory (WM) have predominantly been viewed as necessarily conscious. However, recent findings suggest otherwise. Here we investigate whether visual WM can represent subliminal stimuli, such that the positions of an invisible moving object can be extrapolated or learned about in terms of their task-relevant predictive power. We presented a moving cue subliminally and measured subjects' performance on an orientation-discrimination task at the naturally anticipated location on the cue's trajectory and at variably predictable off-trajectory locations. Our data show that orientation discriminability at the on-trajectory location was not significantly different from that at a nearby off-trajectory location. However, orientation discriminability at locations near the final position of the cue was significantly better than that at distal locations. This finding suggests that a moving object can still attract attention when presented subliminally. In contrast, the dynamic trajectory of the object and its task-relevant predictive patterns may not be monitored and maintained in visual WM. (PsycINFO Database Record (c) 2012 APA, all rights reserved).  相似文献   

12.
Many everyday tasks, such as remembering where you parked, require the capacity to store and manipulate information about the visual and spatial properties of the world. The ability to represent, remember, and manipulate spatial information is known as visuospatial working memory (VSWM). Despite substantial interest in VSWM the mechanisms responsible for this ability remain debated. One influential idea is that VSWM depends on activity in the eye-movement (oculomotor) system. However, this has proved difficult to test because experimental paradigms that disrupt oculomotor control also interfere with other cognitive systems, such as spatial attention. Here, we present data from a novel paradigm that selectively disrupts activation in the oculomotor system. We show that the inability to make eye-movements is associated with impaired performance on the Corsi Blocks task, but not on Arrow Span, Visual Patterns, Size Estimation or Digit Span tasks. It is argued that the oculomotor system is required to encode and maintain spatial locations indicted by a change in physical salience, but not non-salient spatial locations indicated by the meaning of a symbolic cue. This suggestion offers a way to reconcile the currently conflicting evidence regarding the role of the oculomotor system in spatial working memory.  相似文献   

13.
Inhibition of return (IOR) refers to a bias against overt and covert attentional orienting toward previously attended locations. According to the reorienting hypothesis, IOR is generated when attention is withdrawn from the attended location and is prevented from “returning” to it. The present study investigated whether maintenance of attention at the cued location could affect the inhibition of oculomotor orienting to it. To preclude disengagement of attention, we asked participants to maintain the cued location in working memory. Maintenance of visuospatial information in memory has been shown to be accomplished through a sustained shift of spatial attention to a memorized location. Our results show that oculomotor IOR occurs at a particular location even when that location is kept in working memory (Experiment 1). Furthermore, we demonstrate that the mere act of maintenance of a location in working memory produces oculomotor inhibition similar to IOR (Experiments 2 and 3). We conclude that the oculomotor system is used for coding and maintaining locations in spatial working memory. In addition, we demonstrate that endogenous attention associated with maintenance of a location in working memory can be dissociated from the attention needed for execution of a saccadic eye movement.  相似文献   

14.
The purpose of this series of four experiments was to examine the possible role of spontaneous imagery in memory confusions about the way in which visual information had been experienced. After viewing pictures of familiar objects, complete or incomplete in visual form, participants were asked to remember the way in which the objects had been presented. Although, as predicted, memory for the objects themselves was quite good, participants falsely remembered seeing complete versions of pictures that were actually presented as incomplete. These false reports were observed across a variety of encoding and testing conditions. The results suggest that the false reports (referred to here as completion errors) are due to internal representations based on filling-in processes in response to the encoding of incomplete visual information. As such, the results also speak to alternative explanations for the completion errors and, more broadly, to theoretical perspectives that draw on filling-in processes when accounting for object identification and object memory.  相似文献   

15.
Delayed adjustment tasks have recently been developed to examine working memory (WM) precision, that is, the resolution with which items maintained in memory are recalled. However, despite their emerging use in experimental studies of healthy people, evaluation of patient populations is sparse. We first investigated the validity of adjustment tasks, comparing precision with classical span measures of memory across the lifespan in 114 people. Second, we asked whether precision measures can potentially provide a more sensitive measure of WM than traditional span measures. Specifically, we tested this hypothesis examining WM in a group with early, untreated Parkinson's disease (PD) and its modulation by subsequent treatment on dopaminergic medication. Span measures correlated with precision across the lifespan: in children, young, and elderly participants. However, they failed to detect changes in WM in PD patients, either pre‐ or post‐treatment initiation. By contrast, recall precision was sensitive enough to pick up such changes. PD patients pre‐medication were significantly impaired compared to controls, but improved significantly after 3 months of being established on dopaminergic medication. These findings suggest that precision methods might provide a sensitive means to investigate WM and its modulation by interventions in clinical populations.  相似文献   

16.
The current study shows that spatial visual attention is used to retrieve information from visual working memory. Participants had to keep four colored circles in visual working memory. While keeping this information in memory we asked whether one of the colors was present in the array. While retrieving this information, on some trials a probe dot was presented. When this probe dot was presented at the location of the color that had to be retrieved, participants responded faster than when it was presented at another location. Our findings further elaborate the role of visual attention in working memory: not only is attention the mechanism by which information is stored into working memory, it is also the mechanism by which information is retrieved from visual working memory.  相似文献   

17.
The brain’s frontal eye fields (FEF), responsible for eye movement control, are known to be involved in spatial working memory (WM).In a previous fMRI experiment (Wallentin, Roepstorff & Burgess, Neuropsychologia, 2008) it was found that FEF activation was primarily related to the formation of an object-centered, rather than egocentric, spatial reference frame. In this behavioral experiment we wanted to demonstrate a causal relationship between eye movement control and manipulation of spatial reference frames. Sixty-two participants recalled either spatial (“Was X in front of Y?”) or non-spatial (“Was X darker than Y?”) relations in a previously shown image containing two to four objects, each with an intrinsic orientation and unique luminance. During half of all recall trials a moving visual stimulus was presented, which participants had to ignore, thus suppressing eye movement. Response times were significantly slower for spatial relations with distraction while there was no effect on non-spatial relations. There was no effect on accuracy, i.e. WM maintenance. This is consistent with the hypothesis that in spatial representations the FEFs are involved in WM content manipulation, such as establishing an object-centered spatial frame of reference.  相似文献   

18.
Selective attention and working memory capacity (WMC) are related constructs, but debate about the manner in which they are related remains active. One elegant explanation of variance in WMC is that the efficiency of filtering irrelevant information is the crucial determining factor, rather than differences in capacity per se. We examined this hypothesis by relating WMC (as measured by complex span tasks) to accuracy and eye movements during visual change detection tasks with different degrees of attentional filtering and allocation requirements. Our results did not indicate strong filtering differences between high- and low-WMC groups, and where differences were observed, they were counter to those predicted by the strongest attentional filtering hypothesis. Bayes factors indicated evidence favoring positive or null relationships between WMC and correct responses to unemphasized information, as well as between WMC and the time spent looking at unemphasized information. These findings are consistent with the hypothesis that individual differences in storage capacity, not only filtering efficiency, underlie individual differences in working memory.  相似文献   

19.
In what form are multiple spatial locations represented in working memory? The present study revealed that people often maintain the configural properties (interitem relationships) of visuospatial stimuli even when this information is explicitly task-irrelevant. However, the results also indicated that the voluntary allocation of selective attention prior to stimulus presentation, as well as feature-based perceptual segregation of relevant from irrelevant stimuli, can eliminate the influence of stimulus configuration on location-change detection performance. In contrast, voluntary attention cued to the relevant target location following presentation of the stimulus array failed to attenuate these influences. Thus, whereas voluntary selective attention can isolate or prevent the encoding of irrelevant stimulus locations and configural properties, people, perhaps due to limitations in attentional resources, reliably fail to isolate or suppress configural representations that have been encoded into working memory.  相似文献   

20.
Previous studies have indicated that visual working memory performance increases with age in childhood, but it is not clear why. One main hypothesis has been that younger children are less efficient in their attention; specifically, they are less able to exclude irrelevant items from working memory to make room for relevant items. We examined this hypothesis by measuring visual working memory capacity under a continuum of five attention conditions. A recognition advantage was found for items to be attended as opposed to ignored. The size of this attention-related effect was adult-like in young children with small arrays, suggesting that their attention processes are efficient even though their working memory capacity is smaller than that of older children and adults. With a larger working memory load, this efficiency in young children was compromised. The efficiency of attention cannot be the sole explanation for the capacity difference.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号