首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 15 毫秒
1.
This paper provides a new formalization for the class of binary multinomial processing tree (BMPT) models, and theorems for the class are developed using the formalism. MPT models are a popular class of information processing models for categorical data in specific cognitive paradigms. They have a recursive structure that is productively described with the tools of formal language and computation theory. We provide an axiomatization that characterizes BMPT models as strings in a context-free language, and then we add model-theoretic axioms and definitions to interpret the strings as parameterized probabilistic models for categorical data. The language for BMPT models is related to the Full Binary Tree language, a well-studied context-free language. Once BMPT models are viewed from the perspective of the Full Binary Tree language, a number of theoretical and computational results can be developed. In particular, we have a number of results concerning the enumerations of BMPT models as well as the identifiability of subclasses of these models.  相似文献   

2.
When there are order constraints among the parameters of a binary, multinomial processing tree (MPT) model, methods have been developed for reparameterizing the constrained MPT into an equivalent unconstrained MPT. This note provides a theorem that is useful in computing bounds on the estimator variances for the parameters of the constrained model in terms of estimator variances of the parameters of the unconstrained model. In particular, we show that if X and Y are random variables taking values in [0,1], then Var[XY]?2(Var[X]+Var[Y]).  相似文献   

3.
The non-response model in Knott et al. (1991, Statistician, 40, 217) can be represented as a tree model with one branch for response/non-response and another branch for correct/incorrect response, and each branch probability is characterized by an item response theory model. In the model, it is assumed that there is only one source of non-responses. However, in questionnaires or educational tests, non-responses might come from different sources, such as test speededness, inability to answer, lack of motivation, and sensitive questions. To better accommodate such more realistic underlying mechanisms, we propose a a tree model with four end nodes, not all distinct, for non-response modelling. The Laplace-approximated maximum likelihood estimation for the proposed model is suggested. The validation of the proposed estimation procedure and the advantage of the proposed model over traditional methods are demonstrated in simulations. For illustration, the methodologies are applied to data from the 2012 Programme for International Student Assessment (PISA). The analysis shows that the proposed tree model has a better fit to PISA data than other existing models, providing a useful tool to distinguish the sources of non-responses.  相似文献   

4.
A direct method in handling incomplete data in general covariance structural models is investigated. Asymptotic statistical properties of the generalized least squares method are developed. It is shown that this approach has very close relationships with the maximum likelihood approach. Iterative procedures for obtaining the generalized least squares estimates, the maximum likelihood estimates, as well as their standard error estimates are derived. Computer programs for the confirmatory factor analysis model are implemented. A longitudinal type data set is used as an example to illustrate the results.This research was supported in part by Research Grant DAD1070 from the U.S. Public Health Service. The author is indebted to anonymous reviewers for some very valuable suggestions. Computer funding is provided by the Computer Services Centre, The Chinese University of Hong Kong.  相似文献   

5.
The psychometric and classification literatures have illustrated the fact that a wide class of discrete or network models (e.g., hierarchical or ultrametric trees) for the analysis of ordinal proximity data are plagued by potential degenerate solutions if estimated using traditional nonmetric procedures (i.e., procedures which optimize a STRESS-based criteria of fit and whose solutions are invariant under a monotone transformation of the input data). This paper proposes a new parametric, maximum likelihood based procedure for estimating ultrametric trees for the analysis of conditional rank order proximity data. We present the technical aspects of the model and the estimation algorithm. Some preliminary Monte Carlo results are discussed. A consumer psychology application is provided examining the similarity of fifteen types of snack/breakfast items. Finally, some directions for future research are provided.  相似文献   

6.
A marginalization model for the multidimensional unfolding analysis of ranking data is presented. A subject samples one of a number of random points that are multivariate normally distributed. The subject perceives the distances from the point to all the stimulus points fixed in the same multidimensional space. The distances are error perturbed in this perception process. He/she produces a ranking dependent on these error-perturbed distances. The marginal probability of a ranking is obtained according to this ranking model and by integrating out the subject (ideal point) parameters, assuming the above distribution. One advantage of the model is that the individual differences are captured using the posterior probabilities of subject points. Three sets of ranking data are analyzed by the model.  相似文献   

7.
Several hierarchical classes models can be considered for the modeling of three-way three-mode binary data, including the INDCLAS model (Leenen, Van Mechelen, De Boeck, and Rosenberg, 1999), the Tucker3-HICLAS model (Ceulemans, Van Mechelen, and Leenen, 2003), the Tucker2-HICLAS model (Ceulemans and Van Mechelen, 2004), and the Tucker1-HICLAS model that is introduced in this paper. Two questions then may be raised: (1) how are these models interrelated, and (2) given a specific data set, which of these models should be selected, and in which rank? In the present paper, we deal with these questions by (1) showing that the distinct hierarchical classes models for three-way three-mode binary data can be organized into a partially ordered hierarchy, and (2) by presenting model selection strategies based on extensions of the well-known scree test and on the Akaike information criterion. The latter strategies are evaluated by means of an extensive simulation study and are illustrated with an application to interpersonal emotion data. Finally, the presented hierarchy and model selection strategies are related to corresponding work by Kiers (1991) for principal component models for three-way three-mode real-valued data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号