首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A two-point visual control model of steering   总被引:1,自引:0,他引:1  
Salvucci DD  Gray R 《Perception》2004,33(10):1233-1248
When steering down a winding road, drivers have been shown to use both near and far regions of the road for guidance during steering. We propose a model of steering that explicitly embodies this idea, using both a 'near point' to maintain a central lane position and a 'far point' to account for the upcoming roadway. Unlike control models that integrate near and far information to compute curvature or more complex features, our model relies solely on one perceptually plausible feature of the near and far points, namely the visual direction to each point. The resulting parsimonious model can be run in simulation within a realistic highway environment to facilitate direct comparison between model and human behavior. Using such simulations, we demonstrate that the proposed two-point model is able to account for four interesting aspects of steering behavior: curve negotiation with occluded visual regions, corrective steering after a lateral drift, lane changing, and individual differences.  相似文献   

2.
Experienced drivers performed simple steering maneuvers in the absence of continuous visual input. Experiments conducted in a driving simulator assessed drivers' performance of lane corrections during brief visual occlusion and examined the visual cues that guide steering. The dependence of steering behavior on heading, speed, and lateral position at the start of the maneuver was measured. Drivers adjusted steering amplitude with heading and performed the maneuver more rapidly at higher speeds. These dependencies were unaffected by a 1.5-s visual occlusion at the start of the maneuver. Longer occlusions resulted in severe performance degradation. Two steering control models were developed to account for these findings. In the 1st, steering actions were coupled to perceptual variables such as lateral position and heading. In the 2nd, drivers pursued a virtual target in the scene. Both models yielded behavior that closely matches that of human drivers.  相似文献   

3.
Judgements of the apparent vertieality of a single visible line of light were compared under normal support conditions and under water. During head, body and trunk tilts up to 40° the visual vertical was not influenced by water immersion. Greater degrees of lateral body tilt (up to 180°) resulted in slightly greater departures of the visual from the gravitational vertical during immersion relative to terrestrial performance. It was suggested that this was due to the reduction of information from surface pressure receptors in the trunk. The mean visual aftereffects following head, body and trunk tilts were not affected by water immersion in any consistent manner. It was concluded that visual orientation constancy is only marginally reduced by immersion in water.  相似文献   

4.
During locomotion, retinal flow, gaze angle, and vestibular information can contribute to one's perception of self-motion. Their respective roles were investigated during active steering: Retinal flow and gaze angle were biased by altering the visual information during computer-simulated locomotion, and vestibular information was controlled through use of a motorized chair that rotated the participant around his or her vertical axis. Chair rotation was made appropriate for the steering response of the participant or made inappropriate by rotating a proportion of the veridical amount. Large steering errors resulted from selective manipulation of retinal flow and gaze angle, and the pattern of errors provided strong evidence for an additive model of combination. Vestibular information had little or no effect on steering performance, suggesting that vestibular signals are not integrated with visual information for the control of steering at these speeds.  相似文献   

5.
Paved shoulders have long been used to create “forgiving” roads where drivers can maintain control of their vehicles even when as they drift out of the lane. While the safety benefits of shoulders have been well documented, their effects on driver behavior around curves have scarcely been examined. The purpose of this paper is to fill this gap by assessing whether the addition of shoulders affects driver behavior differently as a function of bend direction. Driver behavior in a driving simulator was analyzed on left and right curves of two-lane rural roads in the presence and absence of 0.75-m and 1.25-m shoulders. The results demonstrated significant changes in drivers’ lateral control when shoulders were provided. In the absence of oncoming traffic, the shoulders caused participants to deviate more toward the inner lane edge at curve entry, at the apex and at the innermost position on right bends but not left ones. In the presence of oncoming traffic, this also occurred at the apex and the innermost position, leading participants to spend more time off the lane on right curves. Participants did not slow down in either traffic condition to compensate for steering farther inside, thereby increasing the risk of lane departure on right curves equipped with shoulders. These findings highlight the direction-specific influence of shoulders on a driver’s steering control when driving around bends. They provide arguments supporting the idea that drivers view paved shoulders as a new field of safe travel on right curves. Recommendations are made to encourage drivers to keep their vehicle within the lane on right bends and to prevent potential interference with cyclists when a shoulder is present.  相似文献   

6.
Groen EL  Jenkin HL  Howard IP 《Perception》2002,31(12):1477-1490
A tilted furnished room can induce strong visual reorientation illusions in stationary subjects. Supine subjects may perceive themselves upright when the room is tilted 90 degrees so that the visual polarity axis is kept aligned with the subject. This 'upright illusion' was used to induce roll tilt in a truly horizontal, but perceptually vertical, plane. A semistatic tilt profile was applied, in which the tilt angle gradually changed from 0 degrees to 90 degrees, and vice versa. This method produced larger illusory self-tilt than usually found with static tilt of a visual scene. Ten subjects indicated self-tilt by setting a tactile rod to perceived vertical. Six of them experienced the upright illusion and indicated illusory self-tilt with an average gain of about 0.5. This value is smaller than with true self-tilt (0.8), but comparable to the gain of visually induced self-tilt in erect subjects. Apparently, the contribution of nonvisual cues to gravity was independent of the subject's orientation to gravity itself. It therefore seems that the gain of visually induced self-tilt is smaller because of lacking, rather than conflicting, nonvisual cues. A vector analysis is used to discuss the results in terms of relative sensory weightings.  相似文献   

7.
This article investigates vehicle steering control, focusing on the task of lane changing and the role of different sources of sensory feedback. Participants carried out 2 experiments in a fully instrumented, motion-based simulator. Despite the high level of realism afforded by the simulator, participants were unable to complete a lane change in the absence of visual feedback. When asked to produce the steering movements required to change lanes and turn a corner, participants produced remarkably similar behavior in each case, revealing a misconception of how a lane-change maneuver is normally executed. Finally, participants were asked to change lanes in a fixed-based simulator, in the presence of intermittent visual information. Normal steering behavior could be restored using brief but suitably timed exposure to visual information. The data suggest that vehicle steering control can be characterized as a series of unidirectional, open-loop steering movements, each punctuated by a brief visual update.  相似文献   

8.
The study was designed to investigate target acquisition in the vertical plane with emphasis on establishing strategy differences associated with acquisition triggering methods. Eight subjects were tested. Measurements consisted of target acquisition time, eye-head latency differences, velocity of gaze, eyes and head, and head amplitude. Using 3-way repeated measures analyses of variance the results show that the strategy for acquisition of predictable visual targets in vertical plane with the head unrestrained significantly depended on (a) the direction of the gaze motion with respect to the gravity vector (i.e., there is significant up-down asymmetry), (b) the angular distance of the target, and (c) the method of triggering the command to acquire the target—external versus internal. The data also show that when vertical acquisition is compared with triggering methods in the horizontal plane there is a difference in overall strategy for the acquisition of targets with the same spatial distances from straight ahead gaze when both the eyes and head are used. Among the factors contributing to the difference in strategy for vertical target acquisition are the gravitational vector, the relationship of target displacement and vestibular activitation, biomechanical and neural control asymmetries, and the difference in the vertical field of view.  相似文献   

9.
Studies of the Poggendorff illusion (a transversal interrupted by parallel lines) showed that illusory effects increased linearly with increasing separation between the parallels, increased in inverse proportion to the tangent of the angle of intersection between transversal and parallels, decreased whenever line segments (other than a transversal segment) were omitted, decreasing to zero when the segment of a parallel forming the obtuse angle with the transversal was omitted, and varied systematically with the tilt of the whole display, approaching zero when the transversal was oriented in a horizontal or vertical position. Hypothesis: The Poggendorff illusion involves at least three kinds of effects on the perceived orientation of a segment: distortion by other segments (especially a segment intersecting at an obtuse angle), stability of vertical and Horizontal orientations, and assimilation towards vertical or horizontal.  相似文献   

10.
In order to evaluate the role of edge lines in curve driving we examined steering behaviour in the face of unexpected gradual changes in road geometry. Experienced drivers (N = 13) operating a fixed-base driving simulator steered a car along a single-lane (3.80 m or 7.60 m wide) winding road. The experimental track consisted of eight 90° curves with radii of curvature varying between 75 m and 500 m, separated by 500-m long straight line segments. The model-based nature of the simulator was used to create unexpected online changes in road geometry, implemented through a gradual displacement of one or both edge lines while drivers steered around the delineated bend. Although they regulated their speed as a function of road curvature, drivers were found to consistently cut into and out of the curves. When the edge lines did not move, drivers stabilized their lane position during the 20°–70° curve segments, adopting a position closer to the interior edge line for the narrower lane width and smaller radii of curvature. Motion of the interior edge line, whether inward or outward, gave rise to systematic changes in lane position, while motion of the exterior edge line did not affect driving behaviour. Overall, the results point to a visuo-motor strategy of steering based on zeroing-out changes in the rate of change of angular bearing of the tangent point.  相似文献   

11.
Auditory psychomotor coordination and visual search performance   总被引:2,自引:0,他引:2  
In Experiments 1 and 2, the time to locate and identify a visual target (visual search performance in a two-alternative forced-choice paradigm) was measured as a function of the location of the target relative to the subject's initial line of gaze. In Experiment 1, tests were conducted within a 260 degree region on the horizontal plane at a fixed elevation (eye level). In Experiment 2, the position of the target was varied in both the horizontal (260 degrees) and the vertical (+/- 46 degrees from the initial line of gaze) planes. In both experiments, and for all locations tested, the time required to conduct a visual search was reduced substantially (175-1,200 msec) when a 10-Hz click train was presented from the same location as that occupied by the visual target. Significant differences in latencies were still evident when the visual target was located within 10 degrees of the initial line of gaze (central visual field). In Experiment 3, we examined head and eye movements that occur as subjects attempt to locate a sound source. Concurrent movements of the head and eyes are commonly encountered during auditorily directed search behavior. In over half of the trials, eyelid closures were apparent as the subjects attempted to orient themselves toward the sound source. The results from these experiments support the hypothesis that the auditory spatial channel has a significant role in regulating visual gaze.  相似文献   

12.
The existence of body orientation mental imagery was tested by examining whether self roll tilt imagery affects the subjective visual vertical (SVV). Twenty healthy subjects judged the orientation of a dim luminous bar with respect to gravitational vertical, while normally seated in complete darkness with their head firmly restrained earth vertically. SVV was measured in three conditions: a reference condition with no imagery, and a left and a right imagery condition, during which the bar orientation was to be judged while the subjects imagine themselves roll-tilted towards left or right, respectively. The imagined roll tilts were of the same magnitude as roll tilts which generally induce an E- effect, i.e., an SVV lean toward the side opposite to those of body tilt. If imagery and perception of self roll tilt share common processes, self roll tilt imagery should induce an E-like effect. Results show an imagery- induced E-like effect, which strongly supports the idea that humans can perform mental imagery of body orientation about gravity. Received: 4 April 2000 / Accepted: 1 September 2000  相似文献   

13.
In the present paper, we investigated whether observation of bodily cues—that is, hand action and eye gaze—can modulate the onlooker's visual perspective taking. Participants were presented with scenes of an actor gazing at an object (or straight ahead) and grasping an object (or not) in a 2?×?2 factorial design and a control condition with no actor in the scene. In Experiment 1, two groups of subjects were explicitly required to judge the left/right location of the target from their own (egocentric group) or the actor's (allocentric group) point of view, whereas in Experiment 2 participants did not receive any instruction on the point of view to assume. In both experiments, allocentric coding (i.e., the actor's point of view) was triggered when the actor grasped the target, but not when he gazed towards it, or when he adopted a neutral posture. In Experiment 3, we demonstrate that the actor's gaze but not action affected participants' attention orienting. The different effects of others' grasping and eye gaze on observers' behaviour demonstrated that specific bodily cues convey distinctive information about other people's intentions.  相似文献   

14.
The visual field exerts powerful effects on egocentric spatial localization along both horizontal and vertical dimensions. Thus, (1) prism-produced visual pitch and visual slant generate similar mislocalizations of visually perceived eye level (VPEL) and visually perceived straight ahead (VPSA) and (2) in darkness curare-produced extraocular muscle paresis under eccentric gaze generates similar mislocalizations in VPEL and VPSA that are essentially eliminated by introducing a normal visual field. In the present experiments, however, a search for influences of real visual slant on VPSA to correspond to the influences of visual pitch on VPEL failed to find one. Although the elevation corresponding to VPEL changes linearly with the pitch of a visual field consisting of two isolated 66.5°-long pitched-from-vertical lines, the corresponding manipulation of change in the slant of either a horizontal two-line or a horizontal four-line visual field on VPSA did not occur. The average slope of the VPEL-versus-pitch function across 5 subjects was +0.40 over a ±30° pitch range, but was indistinguishable from 0.00 for the VPSA-versus-slant function over a ±30° slant range. Possible contributions to the difference between susceptibility of VPEL and VPSA to visual influence from extraretinal eye position information, gravity, and several retinal gradients are discussed.  相似文献   

15.
We investigated the structure of visual space with a 3D exocentric pointing task. Observers had to direct a pointer towards a ball. Positions of both objects were varied. We measured the deviations from veridical pointing-directions in the horizontal and vertical planes (slant and tilt resp.). The slant increased linearly with an increasing horizontal visual angle. We also examined the effect of relative distance, i.e., the ratio of the distances between the two objects and the observer. When the pointer was further away from the observer than the ball, the observer directed the pointer in between himself and the ball, whereas when the pointer was closer to the observer he directed the pointer too far away. Neither the horizontal visual angle nor the relative distance had an effect on the tilt. The vertical visual angle had no effect on the deviations of the slant, but had a linear effect on the tilt. These results quantify the anisotropy of visual space.  相似文献   

16.
Studies have found that rolling the visual environment affects observers' perception of gravitational vertical and horizontal and that pitching the environment affects observers' perception of pitch. However, the relationship between these two perceptions is not fully understood. In the present work, observers performed three tasks while in a visual surround whose pitch and roll was manipulated. In the first task, observers adjusted a rod in the frontal-parallel plane to the horizontal (roll). In a second task, they adjusted a rod along a plane parallel to straight-ahead to the vertical (pitch). In the final task (“in-between”), they adjusted a rod midway between the first two conditions. The typical pitch and roll effects were found, as well as a contribution of both pitch and roll to the in-between task. No interaction between pitch and roll effects was found, indicating independent cognitive representations.  相似文献   

17.
Driving around bends at high speeds is a task performed by many on a daily basis but the underlying mechanisms of steering control remain largely unknown. Previous research has shown that when steering, gaze direction can be a critical component of success. However, with increased use of in-vehicle information systems (IVIS), there is growing competition over the same resources that are needed to steer (gaze as well as associated attentional resources). Although it can be argued that locomotor steering is an automatic task that can be performed without recourse to conscious “cognitive” control, much simpler locomotor-related tasks, such as judging one’s heading, have been shown to be affected by concurrent attentional tasks (Wann, Swapp, & Rushton, 2000). Here we examined whether an attentional task placed at an offset fixation point influenced concurrent steering performance along a computer simulated road. The experiments either used gaze-fixation points that had similar properties to real-world road signs (i.e. moved relative to the vehicle) or were more akin to IVIS (i.e. fixed to the vehicle). Results showed that gaze fixation eccentric to future path caused systematic steering biases. The degree or type of cognitive load did not change the degree of steering bias, but there was some evidence of decreased lane variability when viewing the IVIS-type displays. No differences in steering performance were found between the different types of cognitive task. We conclude that where you look is critical for safe driving, and IVIS-type displays might make drivers more susceptible to cognitive interference.  相似文献   

18.
The subjective visual horizontal (SVH) and the subjective head transversal plane (STP) were measured by means of an adjustable luminous line in darkness during centrifuging. Subjects (N = 10) were seated upright, facing forward in a swing-out gondola. After acceleration of the centrifuge to 2G (vectorial sum of the earth's gravity and the centrifugal force; gondola inclination 60 degrees), subjects had to set the line either so that it was perceived as gravitoinertially horizontal (SVH) or so that it was perceived as parallel with the transversal ("horizontal") plane of the head (STP). Initially after acceleration, the SVH was tilted with respect to the gravitoinertial horizontal of the gondola (M = 16.6 degrees). This tilt was compensatory with respect to the gondola inclination. However, the STP was tilted in the opposite direction (M = 12.4 degrees), which might suggest a vestibular-induced distortion of the mental representation of one's own body. Similar results were obtained when measuring the subjective visual vertical (SVV) and the subjective midsagittal plane (SSP) in 5 subjects. The perceived roll angle (obtained as SVH-STP or SVV-SSP) was considerably larger than had previously been reported. Time constants for exponential decay of the tilt of the SVH or SVV were often 2-3 min, indicating a memory for semicircular canal information on changes in head orientation--a position-storage mechanism.  相似文献   

19.
Instructions to simulate visual field narrowing resulted in apparently narrow visual fields when these were evaluated by means of conventional perimetry. However, when a pattern of stripes moving around the visual axis was viewed, the magnitude of the induced change in the subjective horizontal or vertical (roll vection) was unaffected. These results demonstrate that conventional perimetric techniques may in some instances be inadequate to demonstrate functional peripheral vision. Evaluation of the peripheral visual field in perimetry, the role of peripheral vision in visually guided behavior, and the effect of stressors on peripheral visual functions are discussed.  相似文献   

20.
Estimates of the point of intersection of converging line segments depended upon the angle between lines and the orientation of the display. Main conclusion: The tilt of a line is perceptually altered to appear more nearly parallel to the more closely aligned axis, either horizontal or vertical, of an O’s visual field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号