首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The paper presents the conjunctive bias in memory-a novel phenomenon that helps to clarify representations of logical connectives. The conjunctive bias is a tendency toward more accurate recall and recognition of conjunctive forms than of forms based on other logical connectives and a tendency to recall and recognize other logical forms as if they were conjunctions. Three experiments, in which participants' memory representations associated with different logical connectives were examined, were conducted to test the conjunctive bias hypothesis. In Experiment 1, participants learned picture-proposition pairs involving either conjunctions or disjunctions and then had to recall each proposition when cued with its picture. In Experiments 2 and 3, recognition memory for conjunctions, disjunctions, and conditionals was examined with an old/new recognition procedure. The findings of these experiments provide evidence for the conjunctive bias. Furthermore, the results of Experiment 3 suggest that corjunctive bias is not simply a pragmatically caused preference for conjunctions. The discussion focuses on the implications of these findings for current theories of deductive reasoning.  相似文献   

2.
3.
The hippocampal region, a group of brain structures important for learning and memory, has been the focus of a large number of computational models. These tend to fall into two groups: (1) models of the role of the hippocampal region in incremental learning, which focus on the development of new representations that are sensitive to stimulus regularities and environmental context; (2) models that focus on the role of the hippocampal region in the rapid storage and retrieval of episodic memories. Rather than being in conflict, it is becoming apparent that both approaches are partially correct and might reflect the different functions of substructures of the hippocampal region. Future computational models will help to elaborate how these different substructures interact.  相似文献   

4.
Cyclophosphamide (CYP) is an anti-neoplastic agent as well as an immunosuppressive agent. In order to elucidate the alteration in adult hippocampal function following acute CYP treatment, hippocampus-related behavioral dysfunction and changes in adult hippocampal neurogenesis in CYP-treated (intraperitoneally, 40 mg/kg) mice (8–10-week-old ICR) were analyzed using hippocampus-dependent learning and memory tasks (passive avoidance and object recognition memory test) and immunohistochemical markers of neurogenesis (Ki-67 and doublecortin (DCX)). Compared to the vehicle-treated controls, mice trained at 12 h after CYP injection showed significant memory deficits in passive avoidance and the object recognition memory test. The number of Ki-67- and DCX-positive cells began to decrease significantly at 12 h post-injection, reaching the lowest level at 24 h after CYP injection; however, this reverted gradually to the vehicle-treated control level between 2 and 10 days. We suggest that the administration of a chemotherapeutic agent in adult mice interrupts hippocampal functions, including learning and memory, possibly through the suppression of hippocampal neurogenesis.  相似文献   

5.
The context in which events occur can be represented as both (1) a set of independent features, the feature representation view, and (2) a set of features bound into a unitary representation, the conjunction representation view. It is assumed that extrahippocampal (e.g., neocortical) areas provide a basis for feature representations, but the hippocampal formation makes an essential contribution to the automatic storage of conjunctive representations. We develop this dual-representation view and explore its implications for hippocampal contributions to contextual fear conditioning processes. To this end, we discuss how our framework can resolve some of the conflicts in the recent literature relating the hippocampus to contextual fear conditioning. We also present new data supporting the role of a key mechanism afforded by conjunctive representations—pattern completion (the ability of a subset of a memory pattern to activate the complete memory)—in contextual fear conditioning. As is implied by this mechanism, we report that fear can be conditioned to the memory representation of a context that is not actually present at the time of shock. Moreover, this result is predicted by our computational model of cortical and hippocampal function. We suggest that pattern completion demonstrated in animals and by our model provides a mechanistic bridge to human declarative memory.  相似文献   

6.
By integrating previous computational models of corticohippocampal function, the authors develop and test a unified theory of the neural substrates of familiarity, recollection, and classical conditioning. This approach integrates models from 2 traditions of hippocampal modeling, those of episodic memory and incremental learning, by drawing on an earlier mathematical model of conditioning, SOP (A. Wagner, 1981). The model describes how a familiarity signal may arise from parahippocampal cortices, giving a novel explanation for the finding that the neural response to a stimulus in these regions decreases with increasing stimulus familiarity. Recollection is ascribed to the hippocampus proper. It is shown how the properties of episodic representations in the neocortex, parahippocampal gyrus, and hippocampus proper may explain phenomena in classical conditioning. The model reproduces the effects of hippocampal, septal, and broad hippocampal region lesions on contextual modulation of classical conditioning, blocking, learned irrelevance, and latent inhibition.  相似文献   

7.
To compare the predictive value of "cognitive map" and "working memory" theories of hippocampal function, the performance of rats with dorsal hippocampal lesions was compared to that of control rats in a series of experiments. In Experiment I, experimental rats learned a spatial alternation task with normal ease, but in Experiment II, they were significantly impaired on an elevated 8-arm radial maze. In Experiment III, the performance of the same experimental and control rats was compared on two versions of a 16-arm enclosed radial maze. In the first version, carpet inserts served as cues to mark eight unbaited arms and each of the remaining arms contained one food pellet. While both experimental and control rats successfully avoided the set of cued arms, experimental rats reentered uncued baited arms more frequently than did control rats. In the second version no intramaze cues were provided, but the spatial distribution of baited and unbaited arms remained the same as that used in the first version. In this uncued version, experimental rats both entered unbaited arms and reentered baited arms more frequently than did control rats, i.e., they were impaired in both "reference" and "working" memory. These findings are compatible with the hypothesis that hippocampal lesions result in an impaired capacity to form cognitive maps but they are not compatible with the working memory hypothesis. Furthermore, twelve separate evaluators classed experimental rats as using fewer mapping and more orientation strategies than control rats in the 8-arm maze.  相似文献   

8.
9.
In the adult brain, the expression of NT-3 is largely confined to the hippocampal dentate gyrus (DG), an area exhibiting significant neurogenesis. Using a conditional mutant line in which the NT-3 gene is deleted in the brain, we investigated the role of NT-3 in adult neurogenesis, hippocampal plasticity, and memory. Bromodeoxyuridine (BrdU)-labeling experiments demonstrated that differentiation, rather than proliferation, of the neuronal precursor cells (NPCs) was significantly impaired in DG lacking NT-3. Triple labeling for BrdU, the neuronal marker NeuN, and the glial marker GFAP indicated that NT-3 affects the number of newly differentiated neurons, but not glia, in DG. Field recordings revealed a selective impairment in long-term potentiation (LTP) in the lateral, but not medial perforant path-granule neuron synapses. In parallel, the NT-3 mutant mice exhibited deficits in spatial memory tasks. In addition to identifying a novel role for NT-3 in adult NPC differentiation in vivo, our study provides a potential link between neurogenesis, dentate LTP, and spatial memory.  相似文献   

10.
When people recall a list of items that they have just experienced (an episodic memory task), the resulting serial position function looks strikingly similar to that observed when people are asked to recall the presidents of the United States (a semantic memory task). Despite the similarity in appearance, there is disagreement about whether the two functions arise from the same processes. A local distinctiveness model of memory, SIMPLE, successfully fit the presidential data using two underlying dimensions: one corresponding to item (or presidential) distinctiveness and the other to order (or positional) distinctiveness. According to the model, presidential primacy and recency are due to the same mechanisms that give rise to primacy and recency effects in both shortand long-term episodic memory. All of these primacy and recency effects reflect the relative distinctiveness principle (Surprenant & Neath, 2009): Items will be well remembered to the extent that they are more distinct than competing items at the time of retrieval.  相似文献   

11.
The hippocampus appears to be critical for the formation of certain types of memories. Hippocampal-lesioned animals fail to exhibit some spatial, contextual, and relational associations. After aspiration lesions of the hippocampus and/or cortex, male rats were allowed to recover for three weeks before being trained on a matching-to-position task. The matching-to-position task was altered to influence the type of cognitive strategies a subject would use to solve the task. The main behavioral manipulation was the reinforcement contingency assignment: Use of a differential outcomes procedure (DOP) or a nondifferential outcomes procedure (NOP). The DOP involves correlating each to-be-remembered event with a distinct reward condition via Pavlovian trace conditioning, whereas the NOP results in random reward contingency. We found that hippocampal lesions did retard learning the matching rule, regardless of the reinforcement contingency assignment. However, when delay intervals were added to the task memory performance of subjects with hippocampal lesions was dramatically impaired--if subjects were not trained with the DOP. When subjects were trained with the DOP, the hippocampal lesion had a marginal effect on delayed memory performance. These findings demonstrate two important points regarding lesions of the hippocampus: (1) hippocampal lesions have a minimal effect on the on the ability of rats to use reward information to solve a delayed discrimination task; (2) rats with hippocampal lesions have the ability to learn about reward information using Pavlovian trace conditioning procedures.  相似文献   

12.
In this study evidence is given on the mechanisms subjects use to guarantee the stability of their social representations. An initial interview was held in which subjects were asked about the causes of AIDS, affected groups and modes of transmission. Their responses were found to divide into two social representations of AIDS: a conservative-blaming representation and a liberal representation. Subjects were then given technical information about AIDS. Two weeks later, the same subjects were given a free recall test and a recognition test. The results of these tests confirmed subject's tendency to select information which is congruent with their pre-existing representations, and to distort the recall of contradictory information in order to make it compatible with pre-existing representations.  相似文献   

13.
It has been shown that spatial information can be acquired from both visual and nonvisual modalities. The present study explored how spatial information from vision and proprioception was represented in memory, investigating orientation dependence of spatial memories acquired through visual and proprioceptive spatial learning. Experiment 1 examined whether visual learning alone and proprioceptive learning alone yielded orientation-dependent spatial memory. Results showed that spatial memories from both types of learning were orientation dependent. Experiment 2 explored how different orientations of the same environment were represented when they were learned visually and proprioceptively. Results showed that both visually and proprioceptively learned orientations were represented in spatial memory, suggesting that participants established two different reference systems based on each type of learning experience and interpreted the environment in terms of these two reference systems. The results provide some initial clues to how different modalities make unique contributions to spatial representations.  相似文献   

14.
Brockmole JR  Wang RF 《Cognition》2002,83(3):295-316
In everyday life we accomplish tasks that require the storage and access of mental representations of different environments that we are not currently perceiving. Past research has suggested that environments are encoded by a series of independent representations that are organized in memory. Three experiments tested this idea further by asking whether multiple representations of environments can be accessed simultaneously. Using a cued task-set switching paradigm, subjects judged spatial relationships between target locations in two familiar environments. Response times were longer when successive trials probed different environments, an effect not due to switching between semantic categories or semantic priming, suggesting that representations of environments are accessed sequentially. Implications for various hypotheses concerning the properties of environmental representations are discussed.  相似文献   

15.
Procedural and declarative memory systems are postulated to interact in either a synergistic or a competitive manner, and memory consolidation appears to be a highly critical stage for this process. However, the precise cellular mechanisms subserving these interactions remain unknown. To investigate this issue, 24-h retention performances were examined in mice given post-training intrahippocampal injections of forskolin (FK) aiming at stimulating hippocampal adenylyl cyclases (ACs). The injection was given at different time points over a period of 9 h following acquisition in either an appetitive bar-pressing task or water-maze tasks challenging respectively "response memory" and "place memory." Retention testing (24 h) showed that FK injection altered memory formation only when given within a 3- to 6-h time window after acquisition but yielded opposite memory effects as a function of task demands. Retention of the spatial task was impaired, whereas retention of both the cued-response in the water maze and the rewarded bar-press response were improved. Intrahippocampal injections of FK produced an increase in pCREB immunoreactivity, which was strictly limited to the hippocampus and lasted less than 2 h, suggesting that early effects (0-2 h) of FK-induced cAMP/CREB activation can be distinguished from late effects (3-6 h). These results delineate a consolidation period during which specific cAMP levels in the hippocampus play a crucial role in enhancing memory processes mediated by other brain regions (e.g., dorsal or ventral striatum) while eliminating interference by the formation of hippocampus-dependent memory.  相似文献   

16.
The article investigates the relation between declarative and procedural working memory (WM; Oberauer, 2009). Two experiments test the assumption that representations in the two subsystems are selected for processing in analogous ways. Participants carried out a series of decisions on memorized lists of digits. For each decision, they had to select declarative and procedural representations. Regarding declarative representations, participants selected a memory set and a digit within this set as the input to each decision. With respect to the procedural representations, they selected a task set to be applied to the selected digit and a response within that task set. We independently manipulated the number of lists and the number of tasks to be switched among (one, two, or three; Experiment 1) and preparation time for a list switch (Experiment 2). For three effects commonly observed in task-switch studies, analogues in declarative WM were found: list-switch costs, mixing costs, and residual switch costs. List- and task-switch costs were underadditive, suggesting that declarative and procedural representations are selected separately and in parallel. The findings support the hypothesis of two analogous WM subsystems.  相似文献   

17.
Wang H  Johnson TR  Sun Y  Zhang J 《Memory & cognition》2005,33(7):1147-1159
This article reports three experiments in which the representational nature of human object location memory was studied. The results show that multiple frames of reference can be used to encode the spatial relationships among objects. Depending on their dominancy, availability, and validity, these multiple representations interact to determine memory performance. Specifically, representations that are automatically encoded and extensively practiced are more dominant, and their availability improves performance when they are valid. On the other hand, when the dominant representations are available but invalid, people may have to resort to the less dominant representations. As a result, the availability of these dominant but invalid representations can actually hurt performance, due to interference. If these interfering representations are eliminated, the performance is again improved. The implications of these findings for general human spatial cognition are discussed.  相似文献   

18.
The article investigates the relation between declarative and procedural working memory (WM; Oberauer, 2009). Two experiments test the assumption that representations in the two subsystems are selected for processing in analogous ways. Participants carried out a series of decisions on memorized lists of digits. For each decision, they had to select declarative and procedural representations. Regarding declarative representations, participants selected a memory set and a digit within this set as the input to each decision. With respect to the procedural representations, they selected a task set to be applied to the selected digit and a response within that task set. We independently manipulated the number of lists and the number of tasks to be switched among (one, two, or three; Experiment 1) and preparation time for a list switch (Experiment 2). For three effects commonly observed in task-switch studies, analogues in declarative WM were found: list-switch costs, mixing costs, and residual switch costs. List- and task-switch costs were underadditive, suggesting that declarative and procedural representations are selected separately and in parallel. The findings support the hypothesis of two analogous WM subsystems.  相似文献   

19.
This article reviews evidence and theories concerning the nature of stimulus representations in Pavlovian conditioning. It focuses on the elemental approach developed in stimulus sampling theory (R. C. Atkinson & W. K. Estes, 1963; R. R. Bush & F. Mosteller, 1951b) and extended by I. P. L. McLaren and N. J. Mackintosh (2000, 2002) and contrasts this with models that invoke notions of configural representations that uniquely code for different patterns of stimulus inputs (e.g., J. M. Pearce, 1987, 1994; R. A. Rescorla & A. R. Wagner, 1972; A. R. Wagner & S. E. Brandon, 2001). The article then presents a new elemental model that emphasizes interactions between stimulus elements. This model is shown to explain a range of behavioral findings, including those (e.g., negative patterning and biconditional discriminations) traditionally thought to be beyond the explanatory capabilities of elemental models. Moreover, the model offers a ready explanation for recent findings reported by R. A. Rescorla (2000, 2001, 2002b) concerning the way that stimuli with different conditioning histories acquire associative strength when conditioned in compound.  相似文献   

20.
Zhang W  Luck SJ 《Psychological science》2011,22(11):1434-1441
Flexible-resource theories characterize working memory as a flexible resource that can store either a large number of low-quality representations or a small number of high-quality representations. In contrast, limited-item theories propose that the number of items that can be stored in working memory is strictly limited and cannot be increased by decreasing the quality of the representations. We tested these fundamentally different conceptualizations of working memory capacity by determining whether observers could trade quality for quantity in working memory when given incentives to do so. We found no evidence that observers could increase the number of representations by decreasing their quality in working memory, but observers could make such a trade-off at earlier processing stages. Our results show that the capacity limit of working memory is best characterized as a limit on the number of items that can be stored and not as a limit on a finely divisible resource that simultaneously determines the number and quality of the representations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号