首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The current study examined the role redundant amodal properties play in an operant learning task in 3-month-old human infants. Prior studies have suggested that the presence of redundant amodal information facilitates detection and discrimination of amodal properties and potentially functions to influence general learning processes such as associative conditioning. The current study examined how human infants use redundant amodal information (visual and haptic) about the shape of an object to influence learning of an operant response. Infants learned to kick to move a mobile of cylinders while either holding a cylinder, a rectangular cube, or no object. Kick rate served as the dependent measure. The results showed that infants given matching redundant amodal properties (e.g., viewed cylinders while holding a cylinder) showed facilitated operant learning whereas infants given mismatching redundant amodal properties showed inhibited operant learning. These results support and extend the Intersensory Redundancy Hypothesis by demonstrating that amodal redundancy influences complex learning processes such as operant conditioning.  相似文献   

2.
The hippocampus is a subcortical structure in the medial temporal lobe involved in cognitive functions such as spatial navigation and reorientation, episodic memory, and associative learning. While much is understood about the role of hippocampal function in learning and memory in adults, less is known about the relations between the hippocampus and the development of these cognitive skills in young children due to the limitations of using standard methods (e.g., MRI) to examine brain structure and function in developing populations. This study used hippocampal‐dependent trace eyeblink conditioning (EBC) as a feasible approach to examine individual differences in hippocampal functioning as they relate to spatial reorientation and episodic memory performance in young children. Three‐ to six‐year‐old children (N = 50) completed tasks that measured EBC, spatial reorientation, and episodic memory, as well as non‐hippocampal‐dependent processing speed abilities. Results revealed that when age was held constant, individual differences in EBC performance were significantly related to individual differences in performance on the spatial reorientation test, but not on the episodic memory or processing speed tests. When the relations between hippocampal‐dependent EBC and different reorientation strategies were explored, it was found that individual differences in hippocampal function predicted the use of geometric information for reorienting in space as opposed to a combined strategy that uses both geometric information and salient visual cues. The utilization of eyeblink conditioning to examine hippocampal function in young populations and its implications for understanding the dissociation between spatial reorientation and episodic memory development are discussed.  相似文献   

3.
Anticipating the future has a decided evolutionary advantage, and researchers have found many evolutionarily conserved mechanisms by which humans and animals learn to predict future events. Researchers often study such learned behavior using conditioning experiments. The marine snail Aplysia has been at the forefront of research into the cellular and molecular mechanisms of classical conditioning. Recently, Aplysia has also gained a reputation as a valuable model system for operant reward learning. Its feeding behavior can be operantly conditioned in the intact animal as well as in reduced preparations of the nervous system. The reward signal relies on dopamine transmission and acts in conjunction with activity in an identified neuron (B51) to bring about operant memory.  相似文献   

4.
Phosphodiesterase 10A (PDE10A) hydrolyzes both cAMP and cGMP, and is a key element in the regulation of medium spiny neuron (MSN) activity in the striatum. In the present report, we investigated the effects of targeted disruption of PDE10A on spatial learning and memory as well as aversive and appetitive conditioning in C57BL/6 J mice. Because of its putative role in motivational processes and reward learning, we also determined the expression of the immediate early gene zif268 in striatum and anterior cingulate cortex. Animals showed decreased response rates in scheduled appetitive operant conditioning, as well as impaired aversive conditioning in a passive avoidance task. Morris water maze performance revealed not-motor related spatial learning and memory deficits. Anxiety and social explorative behavior was not affected in PDE10A-deficient mice. Expression of zif268 was increased in striatum and anterior cingulate cortex, which suggests alterations in the neural connections between striatum and anterior cingulate cortex in PDE10A-deficient mice. The changes in behavior and plasticity in these PDE10A-deficient mice were in accordance with the proposed role of striatal MSNs and corticostriatal connections in evaluative salience attribution.  相似文献   

5.
Four experiments were performed to investigate the effect of noradrenaline (NA) depletion, following systemic DSP4 treatment, upon a tastehactile discrimination in taste-aversion learning. In Experiments 1 and 2 , noisy bottle (A) + lithium chloride pairings were alternated with saccharin (B) + saline pairings, and vice versa, during Phase I conditioning. The particular order of reinforcement presentation in each case was then reversed, so that a noisy bottle (A) + saline pairing was now altered with a saccharin (B) + lithium chloride pairing, etc., during Phase II (reversal) conditioning. In Experiments 3 and 4 , saccharin in noisy bottle (AB) + lithium chloride pairings alternated with either noisy bottle (A) + saline or saccharin (B) + saline pairings, and vice versa, during Phase I conditioning; the order of reinforcement presentation was then reversed, as above. None of the four experiments performed offered any evidence of impairments of the discrimination task as a result of NA depletion. These results are discussed in the context of associative preparedness and of discrimination learning in operant tasks and recent findings on compound conditioning, following the loss of NA.  相似文献   

6.
In humans, anterograde amnesia can result from damage to the medial temporal (MT) lobes (including hippocampus), as well as to other brain areas such as basal forebrain. Results from animal classical conditioning studies suggest that there may be qualitative differences in the memory impairment following MT vs. basal forebrain damage. Specifically, delay eyeblink conditioning is spared after MT damage in animals and humans, but impaired in animals with basal forebrain damage. Recently, we have likewise shown delay eyeblink conditioning impairment in humans with amnesia following anterior communicating artery (ACoA) aneurysm rupture, which damages the basal forebrain. Another associative learning task, a computer-based concurrent visual discrimination, also appears to be spared in MT amnesia while ACoA amnesics are slower to learn the discriminations. Conversely, animal and computational models suggest that, even though MT amnesics may learn quickly, they may learn qualitatively differently from controls, and these differences may result in impaired transfer when familiar information is presented in novel combinations. Our initial data suggests such a two-phase learning and transfer task may provide a double dissociation between MT amnesics (spared initial learning but impaired transfer) and ACoA amnesics (slow initial learning but spared transfer). Together, these emerging data suggest that there are subtle but dissociable differences in the amnesic syndrome following damage to the MT lobes vs. basal forebrain, and that these differences may be most visible in non-declarative tasks such as eyeblink classical conditioning and simple associative learning.  相似文献   

7.
In humans, anterograde amnesia can result from damage to the medical temporal (MT) lobes (including hippocampus), as well as to other brain areas such as basal forebrain. Results from animal classical conditioning studies suggest that there may be qualitative differences in the memory impairment following MT vs. basal forebrain damage. Specifically, delay eyeblink conditioning is spared after MT damage in animals and humans, but impaired in animals with basal forebrain damage. Recently, we have likewise shown delay eyeblink conditioning impairment in humans with amnesia following anterior communicating artery (ACoA) aneurysm rupture, which damages the basal forebrain. Another associative learning task, a computer-based concurrent visual discrimination, also appears to be spared in MT amnesia while ACoA amnesics are slower to learn the discriminations. Conversely, animal and computational models suggest that, even though MT amnesics may learn quickly, they may learn qualitatively differently from controls, and these differences may result in impaired transfer when familiar information is presented in novel combinations. Our initial data suggests such a two-phase learning and transfer task may provide a double dissociation between MT amnesics (spared initial learning but impaired transfer) and ACoA amnesics (slow initial learning but spared transfer). Together, these merging data suggest that there are subtle but dissociable differences in the amnesic syndrome following damage to the MT lobes vs. basal forebrain, and that these differences may be most visible in non-declarative tasks such as eyeblink classical conditioning and simple associative learning.  相似文献   

8.
CB 1 receptor-compromised animals show profound deficits in extinguishing learned behavior from aversive conditioning tasks, but display normal extinction learning in appetitive operant tasks. However, it is difficult to discern whether the differential involvement of the endogenous cannabinoid system on extinction results from the hedonics or the required responses associated with the disparate tasks. Here, we report that the CB 1 receptor antagonist rimonabant disrupts extinction learning in an aversive, but not in an appetitive, Barnes maze conditioning task. Accordingly, these results provide compelling support for the hypothesis that the endogenous cannabinoid system plays a necessary role in the extinction of aversively motivated behaviors but is expendable for appetitively motivated behaviors.  相似文献   

9.
The context in which events occur can be represented as both (1) a set of independent features, the feature representation view, and (2) a set of features bound into a unitary representation, the conjunction representation view. It is assumed that extrahippocampal (e.g., neocortical) areas provide a basis for feature representations, but the hippocampal formation makes an essential contribution to the automatic storage of conjunctive representations. We develop this dual-representation view and explore its implications for hippocampal contributions to contextual fear conditioning processes. To this end, we discuss how our framework can resolve some of the conflicts in the recent literature relating the hippocampus to contextual fear conditioning. We also present new data supporting the role of a key mechanism afforded by conjunctive representations—pattern completion (the ability of a subset of a memory pattern to activate the complete memory)—in contextual fear conditioning. As is implied by this mechanism, we report that fear can be conditioned to the memory representation of a context that is not actually present at the time of shock. Moreover, this result is predicted by our computational model of cortical and hippocampal function. We suggest that pattern completion demonstrated in animals and by our model provides a mechanistic bridge to human declarative memory.  相似文献   

10.
Three Pavlovian conditioning experiments with human participants are reported, which investigated whether common or separate stimulus representations are involved in solving nonlinear discrimination tasks in different response systems. In our experiments we made use of a negative transfer effect between positive and negative patterning. Experiment 1 specified the conditions under which such a negative transfer effect occurs in human eyelid conditioning. Experiments 2 and 3 investigated whether a similar effect also occurs if two response systems- the eyelid and the skin conductance response system- are trained with trials of both types being randomly interleaved. The presence or absence of a negative transfer effect indicates whether or not the stimulus representations involved in the two conditioning processes overlap. The findings are discussed within the framework of a neuropsychological model of hippocampal function. The results suggest that the representations are distinct and thus support the idea of acquired equivalence and distinctiveness of stimulus representations.  相似文献   

11.
Three experiments used a discriminated operant procedure to study conditional discrimination learning in rats. The first experiment showed that rats were capable of learning a biconditional discrimination in which two contexts served as conditional cues signalling the reinforcement contingencies associated with two discriminative stimuli. The discrimination was learned equally well when one discriminative stimulus signalled food, the other its absence, and when one stimulus signalled food, the other extinction plus mild footshock.

In Experiment 2 it was shown that prior training on such a conditional discrimination enhanced the subsequent context specificity of simple conditioning relative to control groups of animals for whom the prior training had not been conditional. Experiment 3 showed that a reversal of the significance of one pair of discriminative stimuli produced no spontaneous reversal in performance to a second, target, pair.

The pattern of results is best accounted for by an analysis of contextual conditional discrimination learning in terms of stimulus configurations and offers no support for the notion that rats may learn a general conditional rule or set.  相似文献   

12.
The nonselective muscarinic antagonist scopolamine is known to impair the acquisition of some learning tasks such as inhibitory avoidance. There has been recent research into the effects of this drug in contextual fear conditioning and tone fear conditioning paradigms. The purpose of the present study was to assess the role of the selective M1 muscarinic antagonist dicyclomine in these paradigms and in the inhibitory avoidance test. Rats were administered different doses of dicyclomine or saline 30 min before acquisition training. The animals were tested 24 hr later, and it was observed that 16 mg/kg of dicyclomine impaired both contextual fear conditioning and inhibitory avoidance. However, dicyclomine (up to 64 mg/kg) did not affect tone fear conditioning. These results suggest that the selective M1 muscarinic antagonist dicyclomine differentially affects aversively motivated tasks known to be dependent on hippocampal integrity (such as contextual fear conditioning and inhibitory avoidance) but does not affect similar hippocampus-independent tasks.  相似文献   

13.
The aim of the present study was to test if the nigrostriatal pathway is an essential component for a water maze cued task learning and if it works independently of the hippocampal memory system. This hypothesis was tested using an animal model of Parkinson's disease in which male Wistar rats were lesioned in the substantia nigra pars compacta (SNc) by the intranigral infusion of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), thus causing a partial depletion of striatal dopamine. SNc-lesioned and sham-operated animals were implanted bilaterally with guide cannulae above the dorsal hippocampus in order to be tested after the administration of 0.4 microl 2% lidocaine or saline into this structure. The animals were tested in a spatial or in a cued version of the water maze, memory tasks previously reported to model hippocampal-dependent spatial/relational and striatal-dependent S-R learning, respectively. Hippocampal inactivation, but not SNc lesion, impaired learning and memory in the spatial version of the water maze. An opposite situation was observed with the cued version. No significant interaction was observed between the SNc lesion and hippocampal inactivation conditions affecting scores in the spatial or in the cued version of the water maze. These results suggest that the nigrostriatal pathway is an essential part of the memory system that processes S-R learning and that it works independently of the hippocampal memory system that processes spatial/relational memories.  相似文献   

14.
We explored the circumstances in which rats engage either declarative memory (and the hippocampus) or habit memory (and the dorsal striatum). Rats with damage to the hippocampus or dorsal striatum were given three different two-choice discrimination tasks (odor, object, and pattern). These tasks differed in the number of trials required for learning (~10, 60, and 220 trials). Dorsal striatum lesions impaired discrimination performance to a greater extent than hippocampal lesions. Strikingly, performance on the task learned most rapidly (the odor discrimination) was severely impaired by dorsal striatum lesions and entirely spared by hippocampal lesions. These findings suggest that discrimination learning in the rat is primarily supported by the dorsal striatum (and habit memory) and that rats engage a habit-based memory system even for a task that takes only a few trials to acquire. Considered together with related studies of humans and nonhuman primates, the findings suggest that different species will approach the same task in different ways.  相似文献   

15.
The term inhibition of return (IOR) refers to a bias against returning attention to a location or object that has recently been attended. The effect has been shown to occur in various perceptual tasks including stimulus detection, localization, and discrimination, but also to affect higher cognitive processes like lexical access. The present experiments examined whether inhibition of return would impair the high-level processing that is required in accessing item representations in episodic memory. The results show that reaction times for recognition memory decisions are increased under IOR. Furthermore, IOR affects the accuracy of recognition memory, and this effect interacts with the ease of memory access, manipulated, for example, by encoding depth in the learning phase. These results suggest that IOR impairs attentional processing up to the highest cognitive levels, including the access of prior item encounters in episodic memory.  相似文献   

16.
The term inhibition of return (IOR) refers to a bias against returning attention to a location or object that has recently been attended. The effect has been shown to occur in various perceptual tasks including stimulus detection, localization, and discrimination, but also to affect higher cognitive processes like lexical access. The present experiments examined whether inhibition of return would impair the high-level processing that is required in accessing item representations in episodic memory. The results show that reaction times for recognition memory decisions are increased under IOR. Furthermore, IOR affects the accuracy of recognition memory, and this effect interacts with the ease of memory access, manipulated, for example, by encoding depth in the learning phase. These results suggest that IOR impairs attentional processing up to the highest cognitive levels, including the access of prior item encounters in episodic memory.  相似文献   

17.
Recent studies in patients with hippocampal lesions have indicated that the degree of memory impairment is proportional to the extent of damage within the hippocampus. Particularly, patients with damage restricted to the CA1 field demonstrate moderate to severe anterograde amnesia with only slight retrograde amnesia. Comparable results are also seen in other species such as non-human primates and rats; however, the effect of selective damage to CA1 has not yet been characterized in mice. In the present study, we investigated the effects of excitotoxic (NMDA) lesions of dorsal CA1 on several aspects of learning and memory performance in mice. Our data indicate that dorsal CA1 lesioned mice are hyperactive upon exposure to a novel environment, have spatial working memory impairments in the Y-maze spontaneous alternation task, and display deficits in an 8-arm spatial discrimination learning task. Lesioned mice are able to acquire an operant lever-press task but demonstrate extinction learning deficits in this appetitive operant paradigm. Taken together, our results indicate that lesions to dorsal CA1 in mice induce selective learning and memory performance deficits similar to those observed in other species, and extend previous findings indicating that this region of the hippocampus is critically involved in the processing of spatial information and/or the processing of inhibitory responses.  相似文献   

18.
The marine mollusc Aplysia californica exhibits a wide range of nonassociative and associative forms of learning. Recently, we found that the learning repertoire of Aplysia includes operant conditioning (Cook & Carew, 1986, 1989b). The behavior we examined is a naturally occurring, side-to-side head-waving response used by Aplysia in seeking food, obtaining a foothold, and egg laying. Aplysia can be operantly conditioned to reduce head-waving to one side of their body if such a response results in exposure to bright uniform-field illumination, which the animals find aversive. An essential step toward achieving a mechanistic understanding of operant conditioning is to identify and characterize the reinforcement pathway used during the learning. Toward this end, we wished to determine which of the peripheral visual pathways in Aplysia are critical for performance of the operant task. Previous experiments indicated that photic input from the optic and rhinophore nerves functionally inhibited motor neurons that participate in the operant response (head-waving), while photic input from the oral veil nerves excited these same motor neurons (Cook & Carew, 1989c). These findings suggested the hypothesis that one or both of these pathways could play an important role in mediating reinforcement during training. To explore this possibility we operantly trained animals that had received chronic bilateral transections of either the optic and rhinophore nerves or the oral veil nerves C1-C3 (in conjunction with transection of the optic and rhinophore nerves). We found that operant conditioning was not disrupted by ablation of input from the eyes and rhinophores. By contrast, ablation of input from the oral veil (together with that from the eyes and rhinophores) abolished operant conditioning. Thus, the oral veil nerves play a critical modulatory role in operant conditioning of head-waving. This observation further suggested that photic input from the oral veil is conveyed to the CNS via the oral veil nerves. In a final experiment we confirmed that stimulation of the oral veil with light evokes increased afferent activity in the oral veil nerves C1-C2. These results support the idea that the oral veil nerves contain processes that are critical components of the reinforcement pathway for operant conditioning of head-waving.  相似文献   

19.
Existing models of operant learning are relatively insensitive to historical properties of behavior and applicable to only limited data sets. This article proposes a minimal set of principles based on short-term and long-term memory mechanisms that can explain the major static and dynamic properties of operant behavior in both single-choice and multiresponse situations. The critical features of the theory are as follows: (a) The key property of conditioning is assessment of the degree of association between responses and reinforcement and between stimuli and reinforcement; (b) the contingent reinforcement is represented by learning expectancy, which is the combined prediction of response-reinforcement and stimulus-reinforcement associations; (c) the operant response is controlled by the interplay between facilitatory and suppressive variables that integrate differences between expected (long-term) and experienced (short-term) events; and (d) very-long-term effects are encoded by a consolidated memory that is sensitive to the entire reinforcement history. The model predicts the major qualitative features of operant phenomena and then suggests an experimental test of theoretical predictions about the joint effects of reinforcement probability and amount of training on operant choice. We hypothesize that the set of elementary principles that we propose may help resolve the long-standing debate about the fundamental variables controlling operant conditioning.  相似文献   

20.
Despite the fact that TRPV1 receptors are widely expressed in brain structures such as the hippocampus, its functions remain largely unknown. In the present study, we have investigated the possible modulatory role of the hippocampal endovanilloid system upon memory consolidation of two different behavioral tasks in rats. Post-training infusion of the TRPV1 antagonist capsazepine disrupted memory consolidation with a strong training protocol, but not with a weak one in the contextual fear conditioning or in the step-down inhibitory avoidance task. These results provide evidence that the modulation of the hippocampal memory consolidation through TRPV1 receptors takes place only in presence of a strong emotional experience, suggesting that a certain aversiveness level is required in order to recruit endovanilloids to exert this function. A possible synergic role of hippocampal endovanilloid and endocannabinoid system on memory consolidation is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号