首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This study was designed to identify the phase of rapid aimed movements responsible for hand differences in motor skill, and to evaluate potential differences between the hands in accommodating to greater accuracy demands. In both experiments, an accelerometer mounted on a stylus allowed key changes in acceleration to be used to partition the movement into phases. In Experiment 1, slower left hand movement times were attributable primarily to a terminal homing-in phase, especially as target size decreased. Since error rates varied as a function of hand and target size, speed-accuracy trade-offs may have occurred. Experiment 2 rigidly controlled error rate and confirmed the major hand difference to occur in the latter phase of the movement where error correction is presumed. Although less pronounced, adjustments were made in the earlier movement phases as well. Accommodation to greater accuracy demands involved moving the stylus closer to the target before decelerating to engage in error correction. This adjustment to gain enhanced precision was more pronounced in the left hand.  相似文献   

2.
This study was designed to identify the phase of rapid aimed movements responsible for hand differences in motor skill, and to evaluate potential differences between the hands in accommodating to greater accuracy demands. In both experiments, an accelerometer mounted on a stylus allowed key changes in acceleration to be used to partition the movement into phases. In Experiment 1, slower left hand movement times were attributable primarily to a terminal homing-in phase, especially as target size decreased. Since error rates varied as a function of hand and target size, speed-accuracy trade-offs may have occurred. Experiment 2 rigidly controlled error rate and confirmed the major hand difference to occur in the latter phase of the movement where error correction is presumed. Although less pronounced, adjustments were made in the earlier movement phases as well. Accommodation to greater accuracy demands involved moving the stylus closer to the target before decelerating to engage in error correction. This adjustment to gain enhanced precision was more pronounced in the left hand.  相似文献   

3.
The authors studied the development of movement control in speed-accuracy tradeoff conditions in children aged 5-11 years and in adults performing cyclical pointings. Twelve difficulty levels (IDs), ranging from 2 to 6.58 bits, were defined (P. M. Fitts, 1954). Peak and time to peak velocity, acceleration, and deceleration, and acceleration profiles as a function of hand position (Hooke's portraits) were analyzed. Movement time decreased with age and was less affected by ID. Peak velocity and acceleration increased, acceleration and deceleration were decreasingly time consuming, and movement profiles turned to increased harmonicity with age and task easiness. Nevertheless, the developmental trends differed between parameters. Gain in velocity seemed chiefly dependent on improved muscular cooperation patterns before 7 years of age and on improved information processing from age 7 onward; achievement of an optimized strategy in the speed-accuracy tradeoff occurred at age 11 years.  相似文献   

4.
Dynamic characteristics observed in the trajectories of saccadic eye movements reveal systematic variability of the force pulses used to move the eyes. This variability causes saccades to exhibit a linear speed-accuracy trade-off: As the average distance and duration of saccades toward specified target points increase, the standard deviations of saccadic-movement endpoints increase linearly with the saccades' average velocity. The linear trade-off, and other observed stochastic properties of saccades, may be attributed to noise in neuromotor processes and may be described in terms of an impulse-variability model originally designed for characterizing limb movements. According to the model, both eye and limb movements are controlled through stochastic force and time parameters that govern movement kinematics. Such an account may promote a unified conceptual framework for understanding a wide range of motor behavior.  相似文献   

5.
When a limb is moved from one position to a target object, the limb and the target frequently collide. Often, the goal of the movement is to strike the target with a particular magnitude of impact. For single-aiming movements, impact forces have been shown to increase systematically with both an increased movement amplitude and a decreased movement time, thus providing deceleration to the moving limb. Models of speed-accuracy trade-off, however, have neglected to account for the contribution of these impact forces in the control of accurate movements. The aim of this experiment was to examine the modifications in the control strategy as a function of the amount of impact force a subject is allowed to use in decelerating his or her limb. Results showed that the structure of the acceleration-time functions was dictated by the amount of impact force subjects were allowed to use in decelerating the limb. Movement endpoint variability decreased as more impact force was used. The experiment suggests that the impact with a target is an important contributor to the deceleration of the moving limb and a critical determinant of movement organization.  相似文献   

6.
The authors investigated the effects of movement time and movement distance on the information entropy and variability of spatial and temporal error in a discrete aiming movement. In Experiment 1, the authors held movement distance (100 mm) constant and manipulated 11 movement times (300-800 ms) of 8 participants. In Experiment 2, the authors tested 6 movement distances at 2 given movement times (15-60 mm at 300 ms; 40-240 mm at 800 ms) in 8 participants. The variability and entropy for spatial error increased with average movement velocity, whereas the variability and entropy for temporal error decreased as a function of average movement velocity. The common variance between variable error and entropy averaged about 84% and 72% for spatial and temporal errors, respectively, suggesting that the probabilistic approach of entropy reveals features that are not present in the standard deviation index of variability. The findings provide further evidence that information entropy may be a useful single-index representation of variability in the movement speed-accuracy relation.  相似文献   

7.
Two experiments are reported that address the issue of coordination of the eyes, head, and hand during reaching and pointing. Movement initiation of the eyes, head, and hand were monitored in order to make inferences about the type of movement control used. In the first experiment, when subjects pointed with the finger to predictable or unpredictable locations marked by the appearance of a light, no differences between head and eye movement initiation were found. In the second experiment, when subjects pointed very fast with the finger, the head started to move before the eyes did. Conversely, when subjects pointed accurately, and thus more slowly, with the finger, the eyes started to move first, followed by the head and finger. When subjects were instructed to point to the same visual target only with their eyes and head, both fast and accurately, however, eye movement always started before head movement, regardless of speed-accuracy instructions. These results indicate that the behavior of the eye and head system can be altered by introducing arm movements. This, along with the variable movement initiation patterns, contradicts the idea that the eye, head, and hand system is controlled by a single motor program. The time of movement termination was also monitored, and across both experiments, the eyes always reached the target first, followed by the finger, and then the head. This finding suggests that movement termination patterns may be a fundamental control variable.  相似文献   

8.
The goal of this study was to examine how the kinematics of reciprocal aiming movements were affected by both the objective of the movement and the constraints operating on that movement. In Experiment 1, the objective of the movement was indirectly manipulated by capitalizing on the fact that subjects determine their own accuracy and speed limits, despite uniform task instructions to move as quickly and accurately as possible. A Fitts' type reciprocal aiming paradigm was employed, in which 69 subjects were asked to move a stylus repetitively between two spatially separated targets. Four target widths were orthogonally combined with four movement amplitudes, resulting in 16 conditions. Movements were made on an X-Y digitizing tablet. Based on the mean variable error produced on both targets, subjects were differentiated post hoc into three movement objective groups: speed, accuracy, and speed-plus-accuracy. Kinematic analyses revealed that the programming and execution of movements were systematically influenced by both the movement objective and the movement constraints. That is, movement time, peak velocity, dwell time, acceleration and deceleration time, normalized acceleration and normalized deceleration varied systematically as a function of both the speed-accuracy movement objective and the movement constraints of target size and movement distance. Moreover, the consequences of changing the constraints of the movement were affected by an interaction with the objective of the movement. In Experiment 2, the objective of the movement was directly manipulated by varying speed and/or accuracy instructions to subjects. The basic results of Experiment 1 were substantiated. Overall, the results were consistent with the view that motor control is dependent upon sensory consequences.  相似文献   

9.
The goal of this study was to examine how the kinematics of reciprocal aiming movements were affected by both the objective of the movement and the constraints operating on that movement. In Experiment 1, the objective of the movement was indirectly manipulated by capitalizing on the fact that subjects determine their own accuracy and speed limits, despite uniform task instructions to move as quickly and accurately as possible. A Fitts' type reciprocal aiming paradigm was employed, in which 69 subjects were asked to move a stylus repetitively between two spatially separated targets. Four target widths were orthogonally combined with four movement amplitudes, resulting in 16 conditions. Movements were made on an X-Y digitizing tablet. Based on the mean variable error produced on both targets, subjects were differentiated post hoc into three movement objective groups: speed, accuracy, and speed-plus-accuracy. Kinematic analyses revealed that the programming and execution of movements were systematically influenced by both the movement objective and the movement constraints. That is, movement time, peak velocity, dwell time, acceleration and deceleration time, normalized acceleration and normalized deceleration varied systematically as a function of both the speed-accuracy movement objective and the movement constraints of target size and movement distance. Moreover, the consequences of changing the constraints of the movement were affected by an interaction with the objective of the movement. In Experiment 2, the objective of the movement was directly manipulated by varying speed and/or accuracy instructions to subjects. The basic results of Experiment 1 were substantiated. Overall, the results were consistent with the view that motor control is dependent upon sensory consequences.  相似文献   

10.
A linear speed-accuracy trade-off has been found for rapid, precisely timed movements from a home position toward a target point. In this trade-off, We = K1 + K2(D/T), where D is the distance between the home position and the target, T is a pre-specified movement time, and We is the standard deviation of the distances actually moved. This result differs from Fitts' law, the commonly observed logarithmic trade-off in aimed movements. A new experiment with wrist rotations was performed to determine what conditions induce the linear trade-off rather than Fitts' law. Three types of condition are considered: movement brevity, feedback deprivation, and temporal precision. The experiment yielded a linear trade-off for precisely timed movements even when their durations significantly exceeded an amount of time (200 ms) sufficient to process visual feedback. This result suggests that the linearity does not depend on movement brevity and/or feedback deprivation per se. Instead it supports a temporal-precision hypothesis that the linear trade-off occurs when aimed movements must have precisely specified durations.

A linear speed-accuracy trade-off has been found for rapid, precisely timed movements from a home position toward a target point. In this trade-off, We = K1 + K2(D/T), where D is the distance between the home position and the target, T is a pre-specified movement time, and We is the standard deviation of the distances actually moved. This result differs from Fitts' law, the commonly observed logarithmic trade-off in aimed movements. A new experiment with wrist rotations was performed to determine what conditions induce the linear trade-off rather than Fitts' law. Three types of condition are considered: movement brevity, feedback deprivation, and temporal precision. The experiment yielded a linear trade-off for precisely timed movements even when their durations significantly exceeded an amount of time (200 ms) sufficient to process visual feedback. This result suggests that the linearity does not depend on movement brevity and/or feedback deprivation per se. Instead it supports a temporal-precision hypothesis that the linear trade-off occurs when aimed movements must have precisely specified durations.  相似文献   

11.
This study investigated how accuracy is attained in fast goal-directed arm movements. Subjects were instructed to make arm extension movements over three different distances in random order, with and without visual feedback. Target width was varied proportionally with distance. Movement time was kept as short as possible, but there were well-defined limits with respect to accuracy. There appeared to be a large relative variability (variation coefficient [VC]) in the initial acceleration. The VC in the distance the hand moved during the acceleration phase was much smaller. This reduction was accompanied by a strong negative correlation between the initial acceleration and the duration of the acceleration phase. Further, the VC in the total distance moved was less than the VC in the distance moved during acceleration. This result indicates asymmetry between the acceleration and the deceleration phase. This is confirmed by the negative correlation between the distance the hand moved during acceleration and the distance it moved during deceleration. Withdrawal of visual feedback had a significant effect on movement accuracy. No differences were found in the parameters of the acceleration phase in the two feedback conditions, however. our results point to the existence of a powerful variability compensating mechanism within the acceleration phase. This mechanism seems to be independent of visual feedback; this suggests that efferent information (efference copies) and/or proprioceptive information is/are responsible for the timing of agonist and antagonist activation. The asymmetry between the acceleration and deceleration phase contributes to a reduction in the relative variability in the total distance moved. The fact that the withdrawal of visual feedback affected movement variability only during the deceleration phase indicates that visual information is used in the adjustment of antagonist activity.  相似文献   

12.
Speed-accuracy trade-off characteristic of horizontal saccadic eye movements were examined in this study. Unlike limb movements, saccadic eye movements are preprogrammed, unidimensional, and do not involve target impact. Hence, they provide an optimal test of the impulse variability account of the speed-accuracy trade-off in rapid movements. Subjects were required to alternately look at two target lights as fast and as accurately as possible for a period of 10 s. Target lights subtended angles of 5, 10, 15, and 20 degrees. By restricting target distances to less than 20 degrees of arc, the speed-accuracy relation was examined for single horizontal saccadic movements of the eye. movement of the dominant eye was tracked with an infra-red eye monitoring device. Fifty saccadic movements of the eye were recorded for each target distance and used to compute the average amplitude, duration, and velocity of eye movements, as well as, movement endpoint variability. An increase in both average velocity and movement endpoint variability with increasing movement amplitude was found. This, together with the unique features of the eye movement system, support the impulse variability account of the speed-accuracy trade-off in rapid movements.  相似文献   

13.
We studied variability in movement phase plane trajectories (velocity-position relation) during movement. Human subjects performed 10 degrees and 30 degrees elbow flexion and extension movements in a visual step tracking paradigm. The area of ellipses with radii equal to one standard deviation in position and velocity was taken as a measure of trajectory variability. Trajectory variability was determined at 10-ms intervals throughout movements. Trajectory variability in both the acceleration and deceleration phases of movement decreased with practice. The average trajectory variability during deceleration was greater than that during acceleration even after extended practice (1000 trials). During practice, subjects usually increased movement speed while maintaining end-position accuracy. Trajectory variability was also related to movement speed when equal amounts of practice were given. Short duration (fast) movements had greater trajectory variability than long duration movements. Thus there is a tradeoff between movement speed and trajectory variability similar to the classical speed-accuracy tradeoff. Trajectory variability increased rapidly during the acceleratory phase of movement. The rate of increase was positively related to both movement amplitude and speed. Thus, the forces producing limb acceleration were variable and this variability was more marked in faster and larger movements. In contrast, trajectory variability increased more slowly or actually decreased during the deceleratory phase of movements. Forces involved in limb deceleration thus appeared to compensate to a greater or lesser degree for the variability in accelerative forces. The experiments indicate that the entire trajectory of simple limb movements is controlled by the central nervous system. Variations in accelerative forces may be compensated for by associated variations in decelerative forces. The linkage between accelerative and decelerative forces is progressively refined with practice resulting in decreased variability of the movement trajectory.  相似文献   

14.
Stevens JA 《Cognition》2005,95(3):329-350
Four experiments were completed to characterize the utilization of visual imagery and motor imagery during the mental representation of human action. In Experiment 1, movement time functions for a motor imagery human locomotion task conformed to a speed-accuracy trade-off similar to Fitts' Law, whereas those for a visual imagery object motion task did not. However, modality-specific interference effects in Experiment 2 demonstrate visual and motor imagery as cooperative processes when the action represented is tied to visual coordinates in space. Biomechanic-specific motor interference effects found in Experiment 3 suggest one basis for separation of processing channels within motor imagery. Finally, in Experiment 4 representations of motor actions were found to be generated using only visual imagery under certain circumstances: namely, when the imaginer represented the motor action of another individual while placed at an opposing viewpoint. These results suggest that the modality of representation recruited to generate images of human action is dependent on the dynamic relationship between the individual, movement, and environment.  相似文献   

15.
Speed-accuracy trade-off characteristic of horizontal saccadic eye movements were examined in this study. Unlike limb movements, saccadic eye movements are preprogrammed, unidimensional, and do not involve target impact. Hence, they provide an optimal test of the impulse variability account of the speed-accuracy trade-off in rapid movements. Subjects were required to alternately look at two target lights as fast and as accurately as possible for a period of 10 s. Target lights subtended angles of 5,10,15, and 20°. By restricting target distances to less than 20° of arc, the speed-accuracy relation was examined for single horizontal saccadic movements of the eye. Movement of the dominant eye was tracked with an infra-red eye monitoring device. Fifty saccadic movements of the eye were recorded for each target distance and used to compute the average amplitude, duration, and velocity of eye movements, as well as, movement endpoint variability. An increase in both average velocity and movement endpoint variability with increasing movement amplitude was found. This, together with the unique features of the eye movement system, support the impulse variability account of the speed-accuracy trade-off in rapid movements.  相似文献   

16.
Quantity and quality of motor exploration are proposed to be fundamental for infant motor development. However, it is still not clear what types of motor exploration contribute to learning. To determine whether changes in quantity of leg movement and/or variability of leg acceleration are related to performance in a contingency learning task, twenty 6–8-month-old infants with typical development participated in a contingency learning task. During this task, a robot provided reinforcement when the infant’s right leg peak acceleration was above an individualized threshold. The correlation coefficient between the infant’s performance and the change in quantity of right leg movement, linear variability, and nonlinear variability of right leg movement acceleration from baseline were calculated. Simple linear regression and multiple linear regression were calculated to explain the contribution of each variable to the performance individually and collectively. We found significant correlation between the performance and the change in quantity of right leg movement (r = 0.86, p < 0.001), linear variability (r = 0.71, p < 0.001), and nonlinear variability (r = 0.62, p = 0.004) of right leg movement acceleration, respectively. However, multiple linear regression showed that only quantity and linear variability of leg movements were significant predicting factors for the performance ratio (p < 0.001, adjusted R2 = 0.94). These results indicated that the quantity of exploration and variable exploratory strategies could be critical for the motor learning process during infancy.  相似文献   

17.
The effects of instructed movement speed were investigated in two experiments. First, rapid-timing and single-aiming movement tasks were compared. Unlike rapid timing, single aiming implies spatial accuracy. The aim of the first experiment was twofold: (a) to examine whether the requirement of accurate placement termination in single aiming affects the negative relationship between instructed average velocity and reaction time found in rapid timing, and (b) to test the speed-accuracy relationships predicted by the symmetric impulse variability model of these movement tasks. For this purpose, four average velocities (5, 24, 75, and 140 cm/s) were investigated in both types of movement tasks in a two-choice reaction task. The effects of average velocity on reaction time were similar in both single-aiming and rapid-timing tasks, and the predicted linear relationship between instructed average velocity and spatial accuracy was not found. The results suggest that the movement control mode, that is, open loop or closed loop, interferes with effects of instructed average velocity. The movement control mode explanation was confirmed in the second experiment with respect to the effect of paired velocities on reaction time. It is argued that the type of movement control mode must be considered in the interpretation of effects of instructed average velocity on reaction time and spatiotemporal measures.  相似文献   

18.
In two experiments, patterns of response error during a timing accuracy task were investigated. In Experiment 1, these patterns were examined across a full range of movement velocities, which provided a test of the hypothesis that as movement velocity increases, constant error (CE) shifts from a negative to a positive response bias, with the zero CE point occurring at approximately 50% of maximum movement velocity (Hancock & Newell, 1985). Additionally, by examining variable error (VE), timing error variability patterns over a full range of movement velocities were established. Subjects (N = 6) performed a series of forearm flexion movements requiring 19 different movement velocities. Results corroborated previous observations that variability of timing error primarily decreased as movement velocity increased from 6 to 42% of maximum velocity. Additionally, CE data across the velocity spectrum did not support the proposed timing error function. In Experiment 2, the effect(s) of responding at 3 movement distances with 6 movement velocities on response timing error were investigated. VE was significantly lower for the 3 high-velocity movements than for the 3 low-velocity movements. Additionally, when MT was mathematically factored out, VE was less at the long movement distance than at the short distance. As in Experiment 1, CE was unaffected by distance or velocity effects and the predicted CE timing error function was not evident.  相似文献   

19.
A detailed kinematic and electromyographic (EMG) analysis of single degree of freedom timing responses is reported to (a) determine the coherence of kinematic and EMG variability to the reduced timing error variability exhibited with amplitude increments within a given criterion movement time and (b) understand the temporal organization of various movement parameters in simple responses. The data reveal that the variability of kinematic (time to peak acceleration, duration of acceleration phase, time to peak deceleration) and EMG (duration of agonist burst, duration of antagonist burst, time to antagonist burst) timing parameters decreased with increments of average velocity in a manner consistent with the variable timing error. In addition, the coefficient of variation for peak acceleration, peak deceleration, and integrated EMG of the agonist burst followed the same trend. Increasing average movement velocity also led to decreases in premotor and motor reaction times. Overall, the findings suggest a strong coherence between the variability of response outcome, kinematic, and EMG parameters.  相似文献   

20.
A detailed kinematic and electromyographic (EMG) analysis of single degree of freedom timing responses is reported to (a) determine the coherence of kinematic and EMG variability to the reduced timing error variability exhibited with amplitude increments within a given criterion movement time and (b) understand the temporal organization of various movement parameters in simple responses. The data reveal that the variability of kinematic (time to peak acceleration, duration of acceleration phase, time to peak deceleration) and EMG (duration of agonist burst, duration of antagonist burst, time to antagonist burst) timing parameters decreased with increments of average velocity in a manner consistent with the variable timing error. In addition, the coefficient of variation for peak acceleration, peak deceleration, and integrated EMG of the agonist burst followed the same trend. Increasing average movement velocity also led to decreases in premotor and motor reaction times. Overall, the findings suggest a strong coherence between the variability of response outcome, kinematic, and EMG parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号