首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This article uses a general latent variable framework to study a series of models for nonignorable missingness due to dropout. Nonignorable missing data modeling acknowledges that missingness may depend not only on covariates and observed outcomes at previous time points as with the standard missing at random assumption, but also on latent variables such as values that would have been observed (missing outcomes), developmental trends (growth factors), and qualitatively different types of development (latent trajectory classes). These alternative predictors of missing data can be explored in a general latent variable framework with the Mplus program. A flexible new model uses an extended pattern-mixture approach where missingness is a function of latent dropout classes in combination with growth mixture modeling. A new selection model not only allows an influence of the outcomes on missingness but allows this influence to vary across classes. Model selection is discussed. The missing data models are applied to longitudinal data from the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) study, the largest antidepressant clinical trial in the United States to date. Despite the importance of this trial, STAR*D growth model analyses using nonignorable missing data techniques have not been explored until now. The STAR*D data are shown to feature distinct trajectory classes, including a low class corresponding to substantial improvement in depression, a minority class with a U-shaped curve corresponding to transient improvement, and a high class corresponding to no improvement. The analyses provide a new way to assess drug efficiency in the presence of dropout.  相似文献   

2.
新世纪头20年, 国内心理学11本专业期刊一共发表了213篇统计方法研究论文。研究范围主要包括以下10类(按论文篇数排序):结构方程模型、测验信度、中介效应、效应量与检验力、纵向研究、调节效应、探索性因子分析、潜在类别模型、共同方法偏差和多层线性模型。对各类做了简单的回顾与梳理。结果发现, 国内心理统计方法研究的广度和深度都不断增加, 研究热点在相互融合中共同发展; 但综述类论文比例较大, 原创性研究论文比例有待提高, 研究力量也有待加强。  相似文献   

3.
Considering that group comparisons are common in social science, we examined two latent group mean testing methods when groups of interest were either at the between or within level of multilevel data: multiple-group multilevel confirmatory factor analysis (MG ML CFA) and multilevel multiple-indicators multiple-causes modeling (ML MIMIC). The performance of these methods were investigated through three Monte Carlo studies. In Studies 1 and 2, either factor variances or residual variances were manipulated to be heterogeneous between groups. In Study 3, which focused on within-level multiple-group analysis, six different model specifications were considered depending on how to model the intra-class group correlation (i.e., correlation between random effect factors for groups within cluster). The results of simulations generally supported the adequacy of MG ML CFA and ML MIMIC for multiple-group analysis with multilevel data. The two methods did not show any notable difference in the latent group mean testing across three studies. Finally, a demonstration with real data and guidelines in selecting an appropriate approach to multilevel multiple-group analysis are provided.  相似文献   

4.
A unifying framework for generalized multilevel structural equation modeling is introduced. The models in the framework, called generalized linear latent and mixed models (GLLAMM), combine features of generalized linear mixed models (GLMM) and structural equation models (SEM) and consist of a response model and a structural model for the latent variables. The response model generalizes GLMMs to incorporate factor structures in addition to random intercepts and coefficients. As in GLMMs, the data can have an arbitrary number of levels and can be highly unbalanced with different numbers of lower-level units in the higher-level units and missing data. A wide range of response processes can be modeled including ordered and unordered categorical responses, counts, and responses of mixed types. The structural model is similar to the structural part of a SEM except that it may include latent and observed variables varying at different levels. For example, unit-level latent variables (factors or random coefficients) can be regressed on cluster-level latent variables. Special cases of this framework are explored and data from the British Social Attitudes Survey are used for illustration. Maximum likelihood estimation and empirical Bayes latent score prediction within the GLLAMM framework can be performed using adaptive quadrature in gllamm, a freely available program running in Stata.gllamm can be downloaded from http://www.gllamm.org. The paper was written while Sophia Rabe-Hesketh was employed at and Anders Skrondal was visiting the Department of Biostatistics and Computing, Institute of Psychiatry, King's College London.  相似文献   

5.
潜变量交互效应分析方法   总被引:19,自引:0,他引:19  
简要回顾了分析显变量交互效应的常用方法。详细讨论了目前分析潜变量交互效应的主要方法,包括用潜变量的因子得分做回归分析、分组线性结构方程模型分析、加入乘积项的结构方程模型分析和两步最小二乘回归分析,并比较和评价了这些方法的优缺点。最后归纳了潜变量交互效应分析方法的研究趋势,并介绍了新近进展(包括LMS方法和GAPI方法)。  相似文献   

6.
In this article, a maximum likelihood approach is developed to analyze structural equation models with dichotomous variables that are common in behavioral, psychological and social research. To assess nonlinear causal effects among the latent variables, the structural equation in the model is defined by a nonlinear function. The basic idea of the development is to augment the observed dichotomous data with the hypothetical missing data that involve the latent underlying continuous measurements and the latent variables in the model. An EM algorithm is implemented. The conditional expectation in the E-step is approximated via observations simulated from the appropriate conditional distributions by a Metropolis-Hastings algorithm within the Gibbs sampler, whilst the M-step is completed by conditional maximization. Convergence is monitored by bridge sampling. Standard errors are also obtained. Results from a simulation study and a real example are presented to illustrate the methodology.  相似文献   

7.
Missing data are very common in behavioural and psychological research. In this paper, we develop a Bayesian approach in the context of a general nonlinear structural equation model with missing continuous and ordinal categorical data. In the development, the missing data are treated as latent quantities, and provision for the incompleteness of the data is made by a hybrid algorithm that combines the Gibbs sampler and the Metropolis‐Hastings algorithm. We show by means of a simulation study that the Bayesian estimates are accurate. A Bayesian model comparison procedure based on the Bayes factor and path sampling is proposed. The required observations from the posterior distribution for computing the Bayes factor are simulated by the hybrid algorithm in Bayesian estimation. Our simulation results indicate that the correct model is selected more frequently when the incomplete records are used in the analysis than when they are ignored. The methodology is further illustrated with a real data set from a study concerned with an AIDS preventative intervention for Filipina sex workers.  相似文献   

8.
Psychologists are interested in whether friends and couples share similar personalities or not. However, no statistical models are readily available to test the association between personalities and social relations in the literature. In this study, we develop a statistical model for analyzing social network data with the latent personality traits as covariates. Because the model contains a measurement model for the latent traits and a structural model for the relationship between the network and latent traits, we discuss it under the general framework of structural equation modeling (SEM). In our model, the structural relation between the latent variable(s) and the outcome variable is no longer linear or generalized linear. To obtain model parameter estimates, we propose to use a two-stage maximum likelihood (ML) procedure. This modeling framework is evaluated through a simulation study under representative conditions that would be found in social network data. Its usefulness is then demonstrated through an empirical application to a college friendship network.  相似文献   

9.
A general latent variable model is given which includes the specification of a missing data mechanism. This framework allows for an elucidating discussion of existing general multivariate theory bearing on maximum likelihood estimation with missing data. Here, missing completely at random is not a prerequisite for unbiased estimation in large samples, as when using the traditional listwise or pairwise present data approaches. The theory is connected with old and new results in the area of selection and factorial invariance. It is pointed out that in many applications, maximum likelihood estimation with missing data may be carried out by existing structural equation modeling software, such as LISREL and LISCOMP. Several sets of artifical data are generated within the general model framework. The proposed estimator is compared to the two traditional ones and found superior.The research of the first author was supported by grant No. SES-8312583 from the National Science Foundation and by a Spencer Foundation grant. We wish to thank Chuen-Rong Chan for drawing the path diagram.  相似文献   

10.
The common factor model assumes that the linear coefficients (intercepts and factor loadings) linking the observed variables to the latent factors are fixed coefficients (i.e., common for all participants). When the observed variables are participants' observed responses to stimuli, such as their responses to the items of a questionnaire, the assumption of common linear coefficients may be too restrictive. For instance, this may occur if participants consistently use the response scale idiosyncratically. To account for this phenomenon, the authors partially relax the fixed coefficients assumption by allowing the intercepts in the factor model to change across participants. The model is attractive when m factors are expected on the basis of substantive theory but m + 1 factors are needed in practice to adequately reproduce the data. Also, this model for single-level data can be fitted with conventional software for structural equation modeling. The authors demonstrate the use of this model with an empirical data set on optimism in which they compare it with competing models such as the bifactor and the correlated trait-correlated method minus 1 models.  相似文献   

11.
Using an empirical data set, we investigated variation in factor model parameters across a continuous moderator variable and demonstrated three modeling approaches: multiple-group mean and covariance structure (MGMCS) analyses, local structural equation modeling (LSEM), and moderated factor analysis (MFA). We focused on how to study variation in factor model parameters as a function of continuous variables such as age, socioeconomic status, ability levels, acculturation, and so forth. Specifically, we formalized the LSEM approach in detail as compared with previous work and investigated its statistical properties with an analytical derivation and a simulation study. We also provide code for the easy implementation of LSEM. The illustration of methods was based on cross-sectional cognitive ability data from individuals ranging in age from 4 to 23 years. Variations in factor loadings across age were examined with regard to the age differentiation hypothesis. LSEM and MFA converged with respect to the conclusions. When there was a broad age range within groups and varying relations between the indicator variables and the common factor across age, MGMCS produced distorted parameter estimates. We discuss the pros of LSEM compared with MFA and recommend using the two tools as complementary approaches for investigating moderation in factor model parameters.  相似文献   

12.
The main purpose of this article is to develop a Bayesian approach for structural equation models with ignorable missing continuous and polytomous data. Joint Bayesian estimates of thresholds, structural parameters and latent factor scores are obtained simultaneously. The idea of data augmentation is used to solve the computational difficulties involved. In the posterior analysis, in addition to the real missing data, latent variables and latent continuous measurements underlying the polytomous data are treated as hypothetical missing data. An algorithm that embeds the Metropolis-Hastings algorithm within the Gibbs sampler is implemented to produce the Bayesian estimates. A goodness-of-fit statistic for testing the posited model is presented. It is shown that the proposed approach is not sensitive to prior distributions and can handle situations with a large number of missing patterns whose underlying sample sizes may be small. Computational efficiency of the proposed procedure is illustrated by simulation studies and a real example.The work described in this paper was fully supported by a grant from the Research Grants Council of the HKSAR (Project No. CUHK 4088/99H). The authors are greatly indebted to the Editor and anonymous reviewers for valuable comments in improving the paper; and also to D. E. Morisky and J.A. Stein for the use of their AIDS data set.  相似文献   

13.
Latent variable modeling in heterogeneous populations   总被引:20,自引:0,他引:20  
Common applications of latent variable analysis fail to recognize that data may be obtained from several populations with different sets of parameter values. This article describes the problem and gives an overview of methodology that can address heterogeneity. Artificial examples of mixtures are given, where if the mixture is not recognized, strongly distorted results occur. MIMIC structural modeling is shown to be a useful method for detecting and describing heterogeneity that cannot be handled in regular multiple-group analysis. Other useful methods instead take a random effects approach, describing heterogeneity in terms of random parameter variation across groups. These random effects models connect with emerging methodology for multilevel structural equation modeling of hierarchical data. Examples are drawn from educational achievement testing, psychopathology, and sociology of education. Estimation is carried out by the LISCOMP program.Presidential address delivered at the Psychometric Society meetings in Los Angeles, USA and Leuven, Belgium, July 1989. The research was supported by Grant No. SES-8821668 from the National Science Foundation and by Grant No. OERI-G-86-003 from the Office for Educational Research and Improvement, Department of Education. I thank Leigh Burstein, Mike Hollis, Linda Muthén, and Albert Satorra for helpful discussions and Tammy Tam, Jin-Wen Yang, Suk-Woo Kim, and Lynn Short for computational assistance. Designs were created by Arlette Collier, Rita Ling and Jennifer Edic-Bryant.  相似文献   

14.
Incomplete or missing data is a common problem in almost all areas of empirical research. It is well known that simple and ad hoc methods such as complete case analysis or mean imputation can lead to biased and/or inefficient estimates. The method of maximum likelihood works well; however, when the missing data mechanism is not one of missing completely at random (MCAR) or missing at random (MAR), it too can result in incorrect inference. Statistical tests for MCAR have been proposed, but these are restricted to a certain class of problems. The idea of sensitivity analysis as a means to detect the missing data mechanism has been proposed in the statistics literature in conjunction with selection models where conjointly the data and missing data mechanism are modeled. Our approach is different here in that we do not model the missing data mechanism but use the data at hand to examine the sensitivity of a given model to the missing data mechanism. Our methodology is meant to raise a flag for researchers when the assumptions of MCAR (or MAR) do not hold. To our knowledge, no specific proposal for sensitivity analysis has been set forth in the area of structural equation models (SEM). This article gives a specific method for performing postmodeling sensitivity analysis using a statistical test and graphs. A simulation study is performed to assess the methodology in the context of structural equation models. This study shows success of the method, especially when the sample size is 300 or more and the percentage of missing data is 20% or more. The method is also used to study a set of real data measuring physical and social self-concepts in 463 Nigerian adolescents using a factor analysis model.  相似文献   

15.
The first section of this paper describes methodology and major cognitive outcomes of the Canberra Longitudinal Study (CLS). This community study of 1045 Australians aged 70 years or over commenced in 1990. Participants were reassessed on three subsequent occasions. Its major themes were investigations of prevalence of dementia and depression, risk factors, inter-individual variability and instrument development. Over 60 papers arising from the study have been published.

The second section of this paper describes the use of a Factor of Curves (FOC) latent growth model to examine the existence of a common factor responsible for age-related deterioration in cognitive and non-cognitive processes. This analysis is a logical progression in a series of investigations using the Canberra Longitudinal Study into risk factors and correlates of cognitive change using structural equation modeling techniques. The FOC model is described and is used to explore the nature of an hypothesized common factor and to determine its relationship with age, gender, education, pre-morbid intelligence and to the ApoE genotype. Latent growth models were developed for each of reaction time, Symbol Letter Modalities Test (SLMT), Grip strength, self-reported Sensory disability and memory from three waves of data. Second-order latent level slope factors were established based on the individual factor growth curve models. Although a common factor model could be fitted to the data, there is little support that it represents a single common cause.  相似文献   

16.
Throughout much of the social and behavioral sciences, latent growth modeling (latent curve analysis) has become an important tool for understanding individuals' longitudinal change. Although nonlinear variations of latent growth models appear in the methodological and applied literature, a notable exclusion is the treatment of growth following logistic (sigmoidal; S-shape) response functions. Such trajectories are assumed in a variety of psychological and educational settings where learning occurs over time, and yet applications using the logistic model in growth modeling methodology have been sparse. The logistic function, in particular, may not be utilized as often because software options remain limited. In this article we show how a specialized version of the logistic function can be modeled using conventional structural equation modeling software. The specialization is a reparameterization of the logistic function whose new parameters correspond to scientifically interesting characteristics of the growth process. In addition to providing an example using simulated data, we show how this nonlinear functional form can be fit using transformed subject-level data obtained through a learning task from an air traffic controller simulation experiment. LISREL syntax for the empirical example is provided.  相似文献   

17.
This article proposes a new approach to factor analysis and structural equation modeling using Bayesian analysis. The new approach replaces parameter specifications of exact zeros with approximate zeros based on informative, small-variance priors. It is argued that this produces an analysis that better reflects substantive theories. The proposed Bayesian approach is particularly beneficial in applications where parameters are added to a conventional model such that a nonidentified model is obtained if maximum-likelihood estimation is applied. This approach is useful for measurement aspects of latent variable modeling, such as with confirmatory factor analysis, and the measurement part of structural equation modeling. Two application areas are studied, cross-loadings and residual correlations in confirmatory factor analysis. An example using a full structural equation model is also presented, showing an efficient way to find model misspecification. The approach encompasses 3 elements: model testing using posterior predictive checking, model estimation, and model modification. Monte Carlo simulations and real data are analyzed using Mplus. The real-data analyses use data from Holzinger and Swineford's (1939) classic mental abilities study, Big Five personality factor data from a British survey, and science achievement data from the National Educational Longitudinal Study of 1988. (PsycINFO Database Record (c) 2012 APA, all rights reserved).  相似文献   

18.
In recent years, we have witnessed an increase in the complexity of theoretical models that attempt to explain behavior from both contextual and developmental perspectives. This increase in the complexity of our theoretical propositions regarding behavior parallels recent methodological advances for the analysis of change. These new analysis techniques have fundamentally altered how we conceptualize and study change. Researchers have begun to identify larger frameworks to integrate our knowledge regarding the analysis of change. One such framework is latent growth modeling, perhaps the most important and influential statistical revolution to have recently occurred in the social and behavioral sciences. This study presents a basic introduction to a latent growth modeling approach for analyzing repeated measures data. Included is the specification and interpretation of the growth factors, primary extensions such as the analysis of growth in multiple populations, and structural models including both precursors of growth, and subsequent outcomes hypothesized to be influenced by the growth functions.  相似文献   

19.
Sik-Yum Lee 《Psychometrika》2006,71(3):541-564
A Bayesian approach is developed for analyzing nonlinear structural equation models with nonignorable missing data. The nonignorable missingness mechanism is specified by a logistic regression model. A hybrid algorithm that combines the Gibbs sampler and the Metropolis–Hastings algorithm is used to produce the joint Bayesian estimates of structural parameters, latent variables, parameters in the nonignorable missing model, as well as their standard errors estimates. A goodness-of-fit statistic for assessing the plausibility of the posited nonlinear structural equation model is introduced, and a procedure for computing the Bayes factor for model comparison is developed via path sampling. Results obtained with respect to different missing data models, and different prior inputs are compared via simulation studies. In particular, it is shown that in the presence of nonignorable missing data, results obtained by the proposed method with a nonignorable missing data model are significantly better than those that are obtained under the missing at random assumption. A real example is presented to illustrate the newly developed Bayesian methodologies. This research is fully supported by a grant (CUHK 4243/03H) from the Research Grant Council of the Hong Kong Special Administration Region. The authors are thankful to the editor and reviewers for valuable comments for improving the paper, and also to ICPSR and the relevant funding agency for allowing the use of the data. Requests for reprints should be sent to Professor S.Y. Lee, Department of Statistics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong.  相似文献   

20.
Study designs involving clustering in some study arms, but not all study arms, are common in clinical treatment-outcome and educational settings. For instance, in a treatment arm, persons may be nested in therapy groups, whereas in a control arm there are no groups. Methodological approaches for handling such partially nested designs have recently been developed in a multilevel modeling framework (MLM-PN) and have proved very useful. We introduce two alternative structural equation modeling (SEM) approaches for analyzing partially nested data: a multivariate single-level SEM (SSEM-PN) and a multiple-arm multilevel SEM (MSEM-PN). We show how SSEM-PN and MSEM-PN can produce results equivalent to existing MLM-PNs and can be extended to flexibly accommodate several modeling features that are difficult or impossible to handle in MLM-PNs. For instance, using an SSEM-PN or MSEM-PN, it is possible to specify complex structural models involving cluster-level outcomes, obtain absolute model fit, decompose person-level predictor effects in the treatment arm using latent cluster means, and include traditional factors as predictors/outcomes. Importantly, implementation of such features for partially nested designs differs from that for fully nested designs. An empirical example involving a partially nested depression intervention combines several of these features in an analysis of interest for treatment-outcome studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号