首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Entorhinal neurons receive extensive intracortical projections, and form the primary input to the hippocampus via the perforant pathway. The glutamatergic cells of origin for the perforant pathway are distinguished by their expression of reelin, a glycoprotein involved in learning and synaptic plasticity. The functional significance of reelin signaling within the entorhinal cortex, however, remains unexplored. To determine whether interrupting entorhinal reelin signaling might have consequences for learning and memory, we administered recombinant receptor-associated protein (RAP) into the lateral entorhinal cortex (LEC) of young Long-Evans rats. RAP prevents reelin from binding to its receptors, and we verified the knockdown of reelin signaling by quantifying the phosphorylation state of reelin’s intracellular signaling target, disabled-1 (DAB1). Effective knockdown of reelin signaling was associated with impaired performance in the hippocampus-dependent version of the water maze. Moreover, inhibition of reelin signaling induced a localized loss of synaptic marker expression in the LEC. These observations support a role for entorhinal reelin signaling in spatial learning, and suggest that an intact reelin signaling pathway is essential for synaptic integrity in the adult entorhinal cortex.  相似文献   

2.
The mounting evidence for neurogenesis in the adult hippocampus has fundamentally challenged the traditional view of brain development. The intense search for clues as to the functional significance of the new neurons has uncovered a surprising connection between neurogenesis and depression. In animal models of depression, neurogenesis is reduced, whereas many treatments for depression promote neurogenesis. We speculate on why the hippocampus, traditionally viewed as a memory structure, might be involved in mood disorders, and what specific role the new neurons might have in the pathogenesis of and recovery from depression. The proposed role of neurogenesis in contextual-memory formation predicts a specific pattern of cognitive deficits in depression and has important implications for treatment of this highly prevalent and debilitating disorder.  相似文献   

3.
In the present study, an implicit strategy manipulation was used to explore the contribution of memory strategy to brain activation and behavioral performance. Participants were biased to use either a short-term (maintenance-focused) or long-term (retrieval-focused) memory strategy within a single memory task through manipulation of task context. In comparing directly matched trials across the different task contexts, we observed clear changes in both behavioral performance and brain activity across a network of regions located primarily within lateral and medial frontal cortex. These effects of the memory strategy manipulation suggest that when a retrieval-focused strategy is induced, mnemonic processes are preferentially engaged during the encoding period. In contrast, when a maintenance-focused strategy is induced, mnemonic processes are preferentially engaged during the delay and response periods. Taken together, the results imply that covert cognitive strategies play an important role in modulating brain activation and behavior during memory tasks.  相似文献   

4.
A rapidly learned odor discrimination task based on spontaneous foraging behavior of the rat was used to evaluate the role of N-methyl-D-aspartate (NMDA) receptors (NMDARs) in ongoing memory consolidation. Rats were trained in a single session to discriminate among three odors, one of which was associated with palatable food reward. Previous experiments showed that the NMDAR antagonist DL-APV induced amnesia for this task when injected immediately after training. In the present study, memory was reactivated 24 h after training by exposure to the rewarded odor within the experimental context after which rats received an intracerebroventricular injection of APV. Combined reactivation-drug treatment induced profound amnesia when tested 48 h later. Animals receiving drug alone, in absence of reactivation, showed perfect retention. It is concluded that NMDARs support a consolidation process taking place after memory reactivation.  相似文献   

5.
Evidence has shown that the insulin and insulin receptor (IR) play a role in cognitive function. However, the detailed mechanisms underlying insulin's action on learning and memory are not yet understood. Here we investigated changes in long-term memory-associated expression of the IR and downstream molecules in the rat hippocampus. After long-term memory consolidation following a water maze learning experience, gene expression of IR showed an up-regulation in the CA1, but a down-regulation in the CA3 region. These were correlated with a significant reduction in hippocampal IR protein levels. Learning-specific increases in levels of downstream molecules such as IRS-1 and Akt were detected in the synaptic membrane accompanied by decreases in Akt phosphorylation. Translocation of Shc protein to the synaptic membrane and activation of Erk1/2 were also observed after long-term memory formation. Despite the clear memory-correlated alterations in IR signaling pathways, insulin deficits in experimental diabetes mellitus (DM) rats induced by intraperitoneal injections of streptozotocin resulted in only minor memory impairments. This may be due to higher glucose levels in the DM brain, and to compensatory mechanisms from other signaling pathways such as the insulin-like growth factor-1 receptor (IGF-1R) system. Our results suggest that insulin/IR signaling plays a modulatory role in learning and memory processing, which may be compensated for by alternative pathways in the brain when an insulin deficit occurs.  相似文献   

6.
The hippocampus plays an important role in learning and memory, but the precise nature of that involvement remains uncertain. Transection of the perforant path, a primary input pathway to the hippocampus, has been shown to produce changes in reaction to novelty and acquisition of active avoidance; the nature and magnitude of these changes vary with lateral or medial perforant path damage. In a series of experiments on adult rats, the role of these pathways in spontaneous alternation, exploration, acquisition and extinction of conditioned responses, passive avoidance, and conditioned taste aversion was investigated. Lateral transection reduced exploration while medial transection facilitated acquisition of an active avoidance response; no effects were observed on any other measure. Results are discussed in terms of what perforant path damage might reveal regarding the interactions of the hippocampus with other brain regions.  相似文献   

7.
The hippocampus plays an important role in learning and memory, but the precise nature of that involvement remains uncertain. Transection of the perforant path, a primary input pathway to the hippocampus, has been shown to produce changes in reaction to novelty and acquisition of active avoidance; the nature and magnitude of these changes vary with lateral or medial perforant path damage. In a series of experiments on adult rats, the role of these pathways in spontaneous alternation, exploration, acquisition and extinction of conditioned responses, passive avoidance, and conditioned taste aversion was investigated. Lateral transection reduced exploration while medial transection facilitated acquisition of an active avoidance response; no effects were observed on any other measure. Results are discussed in terms of what perforant path damage might reveal regarding the interactions of the hippocampus with other brain regions.  相似文献   

8.
Autobiographical–episodic memory is the conjunction of subjective time, autonoetic consciousness and the experiencing self. Understanding the neural correlates of autobiographical–episodic memory might therefore be essential for shedding light on the neurobiology underlying the experience of being an autonoetic self. In this contribution we illustrate the intimate relationship between autobiographical–episodic memory and self by reviewing the clinical and neuropsychological features and brain functional imaging correlates of psychogenic amnesia – a condition that is usually characterized by severely impaired retrograde memory functioning, in absence of structural brain damage as detected by standard imaging. We demonstrate that in this disorder the autobiographical–episodic memory deficits do not exist in isolation, but occur with impairments of the autonoetic self-consciousness, emotional processing, and theory of mind or executive functions. Furthermore functional and metabolic brain alterations involving regions that are agreed upon to exert crucial roles in memory processes were frequently found to accompany the psychogenic memory “loss”.  相似文献   

9.
Behavioural and neuroimaging studies suggest that spontaneous and task-related thought processes share common cognitive mechanisms and neural bases. Lateral rostral prefrontal cortex (RPFC) is a brain region that has been implicated both in spontaneous thought and in high-level cognitive control processes, such as goal/subgoal integration and the manipulation of self-generated thoughts. We therefore propose that the recruitment of lateral RPFC may follow a U-shaped function of cognitive demand: relatively high in low-demand situations conducive to the emergence of spontaneous thought, and in high-demand situations depending on processes supported by this brain region. We used functional magnetic resonance imaging to investigate brain activity while healthy participants performed two tasks, each with three levels of cognitive demands, in a block design. The frequency of task-unrelated thoughts, measured by questionnaire, was highest in the low cognitive demand condition. Low and high cognitive demand conditions were each compared to the intermediate level. Lateral RPFC and superior parietal cortex were recruited in both comparisons, with additional activations specific to each contrast. These results suggest that RPFC is involved both when (a) task demands are low, and the mind wanders, and (b) the task requires goal/subgoal integration and manipulation of self-generated thoughts.  相似文献   

10.
The requirement for de novo protein synthesis during multiple forms of learning, memory and behavior is well-established; however, we are only beginning to uncover the regulatory mechanisms that govern this process. In order to determine how translation initiation is regulated during neuroplasticity we engineered mutant C57Bl/6J mice that lack the translation repressor eukaryotic initiation factor 4E-binding protein 2 (4E-BP2) and have previously demonstrated that 4E-BP2 plays a critical role in hippocampus-dependent synaptic plasticity and memory. Herein, we examined the 4E-BP2 knockout mice in a battery of paradigms to address motor activity and motor skill learning, anxiety and social dominance behaviors, working memory and conditioned taste aversion. We found that the 4E-BP2 knockout mice demonstrated altered activity in the rotating rod test, light/dark exploration test, spontaneous alternation T-maze and conditioned taste aversion test. The information gained from these studies builds a solid foundation for future studies on the specific role of 4E-BP2 in various types of behavior, and for a broader, more detailed examination of the mechanisms of translational control in the brain.  相似文献   

11.
Functional connectivity is the statistical association of neuronal activity time courses across distinct brain regions, supporting specific cognitive processes. This coordination of activity is likely to be highly important for complex aspects of cognition, such as the communication of fluctuating task goals from higher‐order control regions to lower‐order, functionally specific regions. Some of these functional connections are identifiable even when relevant cognitive tasks are not being performed (i.e. at rest). We used magnetoencephalographic recordings projected into source space to demonstrate that resting state networks in childhood have electrophysiological underpinnings that are evident in the spontaneous fluctuations of oscillatory brain activity. Using the temporal structure of these oscillatory patterns we were able to identify a number of functional resting state networks analogous to those reported in the adult literature. In a second analysis we fused this dynamic temporal information with the spatial information from a functional magnetic resonance imaging analysis of functional connectivity, to demonstrate that inter‐subject variability in these electrophysiological measures of functional connectivity is correlated with individual differences in cognitive ability: the strength of connectivity between a fronto‐parietal network and lower‐level processing areas in inferior temporal cortex was associated with spatial working memory capacity, as measured outside the scanner with educationally relevant standardized assessments. This study represents the first exploration of the electrophysiological mechanisms underpinning resting state functional connectivity in source space in childhood, and the extent to which the strength of particular connections is associated with cognitive ability.  相似文献   

12.
The dentate gyrus (DG) is among the few areas in the mammalian brain where production of new neurons continues in the adulthood. Although its functional significance is not completely understood, several lines of evidence suggest the role of DG neurogenesis in learning and memory. Considering that long-term potentiation (LTP) is a prime candidate for the process underlying hippocampal learning and memory, these results raise the possibility that LTP and neurogenesis are closely related. Here, we investigated whether or not LTP induction in the afferent pathway triggers enhanced proliferation of progenitor cells in the DG. LTP was induced by tetanic stimulation in perforant path-DG synapses in one hemisphere, and the number of newly generated progenitor (BrdU-labeled) cells in the DG was quantified. Compared with the control hemisphere (stimulated with low-frequency pulses), the LTP-induced hemisphere contained a significantly higher number of newly generated progenitor cells in the dorsal as well as ventral DG. When CPP, an NMDA receptor antagonist, was administered, tetanic stimulation neither induced LTP nor enhanced progenitor cell proliferation, indicating that NMDA receptor activation, rather than tetanic stimulation per se, is responsible for enhanced progenitor proliferation in the control animal. Our results show that tetanic stimulation of perforant path sufficient to induce LTP increases progenitor proliferation in adult DG in an NMDA receptor-dependent manner.  相似文献   

13.
The administration of the ryanodine receptor (RyR) agonist 4-Cmc (0.003-9 nmol per mouse intracerebroventricularly [i.c.v.]) ameliorated memory functions, whereas the RyR antagonist ryanodine (0.0001-1 nmol per mouse i.c.v.) induced amnesia in the mouse passive avoidance test. The role of the type 1, 2, and 3 RyR isoforms in memory processes was then evaluated by inhibiting the expression of the three RyR proteins in the mouse brain. A selective knockdown of the RyR isoforms was obtained by the i.c.v. administration of antisense oligonucleotides (aODNs) complementary to the sequence of RyR1, RyR2 and RyR3 proteins, as demonstrated by immunoblotting experiments. RyR1 (5-9 nmol per mouse i.c.v.) knockdown mice did not show any memory dysfunction. Conversely, RyR2 (1-7 nmol per mouse i.c.v.) and RyR3 (1-7 nmol per mouse i.c.v.) knockdown animals showed an impairment of memory processes. This detrimental effect was temporary and reversible, disappearing 7 d after the end of the aODN treatment. At the highest effective doses, none of the compounds used impaired motor coordination, as revealed by the rota rod test, nor modified spontaneous mobility and inspection activity, as revealed by the hole-board test. In conclusion, the lack of any involvement of cerebral RyR1 was demonstrated. These findings also showed the involvement of type 2 and type 3 RyR in the modulation of memory functions identifying these cerebral RyR isoforms as critical targets underlying memory processes.  相似文献   

14.
腺苷A2a受体介导利血平引起的行为性抑郁   总被引:2,自引:0,他引:2  
研究腺昔在利血平引起的大鼠行为性抑郁中的作用。应用Porsolt游泳试验,观察注射利血平引起的大鼠行为性抑郁,通过腹腔注射非特异性腺昔受体阻断剂咖啡因和特异性A1和A2腺昔受体阻断剂,确定腺昔在利血平诱导的大鼠行为性抑郁中的作用以及介导这种作用的受体。结果发现:腹腔注射利血平(4、6和8mg/kg)可导致大鼠在游泳试验中漂浮时间明显延长,咖啡因和A2a腺昔受体阻断剂能明显缩短利血平导致的漂浮时间的延长。结论:腺昔通过A2a受体介导利血平引起的大鼠的行为性抑郁。  相似文献   

15.
The discovery of multiple memory systems supported by discrete brain regions has been one of the most important advances in behavioral neuroscience. A wealth of studies have investigated the role of the hippocampus and related structures in supporting various types of memory classifications. While the exact classification that best describes hippocampal function is often debated, a specific subset of cognitive function that is focused on the use of spatial information to form hippocampal cognitive maps has received extensive investigation. These studies frequently employ a variety of experimental manipulations including brain lesions, temporary neural blockade due to cooling or discrete injections of specific drugs. While these studies have provided important insights into the function of the hippocampus, they are limited due to the invasive nature of the manipulation. Ethanol is a drug that is easily administered in a non-invasive fashion, is rapidly absorbed and produces effects only in specific brain regions. The hippocampus is one brain region affected by acute ethanol administration. The following review summarizes research from the last 20 years investigating the effects of acute ethanol administration on one specific type of hippocampal cognitive function, namely spatial memory. It is proposed that among its many effects, one specific action of acute ethanol administration is to produce similar cognitive and neurophysiological effects as lesions of the hippocampus. Based on these similarities and the ease of its use, it is concluded that acute ethanol administration is a valuable tool in studying hippocampal function and multiple memory systems.  相似文献   

16.
The cholinergic system has been implicated in learning and memory. The nucleus basalis (NB) provides acetylcholine (ACh) to the cerebral cortex. Pairing a tone with NB stimulation (NBstm) to alter cortical state induces both associative specific tuning plasticity in the primary auditory cortex (A1) and associative specific auditory behavioral memory. NB-induced memory has major features of natural memory that is induced by pairing a tone with motivational reinforcers, e.g., food or shock, suggesting that the cholinergic system may be a “final common pathway” whose activation promotes memory storage. Alternatively, NB stimulation might itself be motivationally significant, either rewarding or punishing. To investigate these alternatives, adult male rats (n = 7) first formed a specific NB-induced memory (CS = 8.0 kHz, 2.0 s paired with NBstm, ISI = 1.8 s, 200 trials), validated by post-training (24 h) frequency generalization gradients (1–15 kHz) of respiration interruption that were specific to the CS frequency. Thereafter, they received the same level of NBstm that had induced memory, while confined to one quadrant of an arena, and later tested for place-preference, i.e., avoidance or seeking of the quadrant of NBstm. This NBstm group exhibited neither preference for nor against the stimulated quadrant, compared to sham-operated subjects (n = 7). The findings indicate that specific associative memory can be induced by direct activation of the NB without detectable motivational effects of NB stimulation. These results are concordant with a memory-promoting role for the nucleus basalis that places it “downstream” of motivational systems, which activate it to initiate the storage of the current state of its cholinergic targets.  相似文献   

17.
Functional tool usage is a critical aspect of our daily lives. Not only must we know which tools to use for a specific action goal, we must also know how to manipulate those tools in meaningful way to achieve the goal of the action. The purpose of this study was to identify the regions of the brain critical to supporting the process of understanding errors in tool manipulation. Using fMRI, neural activations were recorded while subjects were presented with images demonstrating typical action scenes (screwdriver used on a screw), but with the tool being manipulated either correctly (screwdriver held by handle) or incorrectly (screwdriver held by bit rather than handle). Activations in fMRI for identifying correct over incorrect tool manipulation were seen along the canonical parietofrontal action network, while activations for identifying incorrect over correct tool manipulation were primarily seen at superior temporal areas and insula. We expand our hypotheses about ventral brain networks identifying contextual error to further suggest mechanisms for understanding functional tool actions, which collectively we regard as functional affordances. This proposes a fundamental role for ventral brain areas in functional action understanding.  相似文献   

18.
Phonological processing abilities were studied in a patient who, following focal brain damage, showed selective impairment in non-word reading, writing, and repetition and also a severe short-term memory (STM) deficit specific for auditorily presented verbal material. The patient could execute tasks involving phonemic manipulation and awareness perfectly. Our data, in contrast with earlier observations in a case of developmental phonological dyslexia, show that acquired impairment in non-word reading, writing, repetition, and immediate memory may occur despite good phonological processing abilities. The role of STM in processing meaningless verbal material is discussed.  相似文献   

19.
When given the opportunity to take notes in memory tasks, children sometimes make notes that are not useful. The current study examined the role that task constraints might play in the production of nonmnemonic notes. In Experiment 1, children played one easy and one difficult memory game twice, once with the opportunity to make notes and once without that opportunity. More children produced functional notations for the easier task than for the more difficult task, and their notations were beneficial to memory performance. Experiment 2 found that the majority of children who at first made nonmnemonic notations were able to produce functional notations with minimal training, and there was no significant difference in notation quality or memory performance between spontaneous and trained note takers. Experiment 3 revealed that the majority of children could transfer their training to a novel task. The results suggest that children’s production of nonmnemonic notes may be due in part to a lack of knowledge regarding what task information is important to represent or how to represent it in their notes rather than to an inability to make functional notes in general.  相似文献   

20.
Brain shape might influence cognitive performance because of the relationships between functions, spatial organization, and differential volumetric development of cortical areas. Here we analyze the relationships between midsagittal brain shape variation and a set of basic psychological measures. Coordinates in 2D from 102 MRI-scanned young adult human brains were superimposed through a Procrustes approach, and the residual variation was regressed onto 21 cognitive tests performed by the same individuals. Most of the composite and specific variables (including general intelligence, working memory, attention, and executive functions) do not show meaningful correlations with midsagittal brain morphology. However, variables related to mental speed display subtle but consistent correlations with brain shape variation. Such correlations are small, suggesting that the influence of midsagittal brain geometry on individual cognitive performance is negligible. Nevertheless, this evidence can supply information on brain biology and evolution. Areas associated with the parietal cortex appear to be involved in relationships between brain geometry and mental speed. These areas have been associated with relevant endocranial differences between living and extinct humans, and are important as functional and structural components of brain organization. The limited correlation between brain geometry and mental speed among modern individuals might be more relevant when the large paleoneurological variation of the genus Homo is taken into account.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号