首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Hybrid Logic of Linear Set Spaces   总被引:1,自引:0,他引:1  
  相似文献   

2.
We investigate computational properties of propositional logics for dynamical systems. First, we consider logics for dynamic topological systems (W.f), fi, where W is a topological space and f a homeomorphism on W. The logics come with ‘modal’ operators interpreted by the topological closure and interior, and temporal operators interpreted along the orbits {w, f(w), f2 (w), ˙˙˙} of points w ε W. We show that for various classes of topological spaces the resulting logics are not recursively enumerable (and so not recursively axiomatisable). This gives a ‘negative’ solution to a conjecture of Kremer and Mints. Second, we consider logics for dynamical systems (W, f), where W is a metric space and f and isometric function. The operators for topological interior/closure are replaced by distance operators of the form ‘everywhere/somewhere in the ball of radius a, ‘for a ε Q +. In contrast to the topological case, the resulting logic turns out to be decidable, but not in time bounded by any elementary function.  相似文献   

3.
A hypermodality is a connective whose meaning depends on where in the formula it occurs. The paper motivates the notion and shows that hypermodal logics are much more expressive than traditional modal logics. In fact we show that logics with very simple K hypermodalities are not complete for any neighbourhood frames.  相似文献   

4.
In this paper we argue that hybrid logic is the deductive setting most natural for Kripke semantics. We do so by investigating hybrid axiomatics for a variety of systems, ranging from the basic hybrid language (a decidable system with the same complexity as orthodox propositional modal logic) to the strong Priorean language (which offers full first-order expressivity).We show that hybrid logic offers a genuinely first-order perspective on Kripke semantics: it is possible to define base logics which extend automatically to a wide variety of frame classes and to prove completeness using the Henkin method. In the weaker languages, this requires the use of non-orthodox rules. We discuss these rules in detail and prove non-eliminability and eliminability results. We also show how another type of rule, which reflects the structure of the strong Priorean language, can be employed to give an even wider coverage of frame classes. We show that this deductive apparatus gets progressively simpler as we work our way up the expressivity hierarchy, and conclude the paper by showing that the approach transfers to first-order hybrid logic.A preliminary version of this paper was presented at the fifth conference on Advances in Modal Logic (AiML 2004) in Manchester. We would like to thank Maarten Marx for his comments on an early draft and Agnieszka Kisielewska for help with the proof reading.Special Issue Ways of Worlds II. On Possible Worlds and Related Notions Edited by Vincent F. Hendricks and Stig Andur Pedersen  相似文献   

5.
A hybrid logic is obtained by adding to an ordinary modal logic further expressive power in the form of a second sort of propositional symbols called nominals and by adding so-called satisfaction operators. In this paper we consider hybridized versions of S5 (“the logic of everywhere”) and the modal logic of inequality (“the logic of elsewhere”). We give natural deduction systems for the logics and we prove functional completeness results.  相似文献   

6.
Algebraic approach to study of classical and non-classical logical calculi was developed and systematically presented by Helena Rasiowa in [48], [47]. It is very fruitful in investigation of non-classical logics because it makes possible to study large families of logics in an uniform way. In such research one can replace logics with suitable classes of algebras and apply powerful machinery of universal algebra. In this paper we present an overview of results on interpolation and definability in modal and positive logics,and also in extensions of Johansson's minimal logic. All these logics are strongly complete under algebraic semantics. It allows to combine syntactic methods with studying varieties of algebras and to flnd algebraic equivalents for interpolation and related properties. Moreover, we give exhaustive solution to interpolation and some related problems for many families of propositional logics and calculi. This paper is a version of the invited talk given by the author at the conference Trends in Logic III, dedicated to the memory of A. MOSTOWSKI, H. RASIOWA and C. RAUSZER, and held in Warsaw and Ruciane-Nida from 23rd to 25th September 2005. Presented by Jacek Malinowski  相似文献   

7.
Wansing  Heinrich 《Studia Logica》1999,62(1):49-75
The paper provides a uniform Gentzen-style proof-theoretic framework for various subsystems of classical predicate logic. In particular, predicate logics obtained by adopting van Behthem's modal perspective on first-order logic are considered. The Gentzen systems for these logics augment Belnap's display logic by introduction rules for the existential and the universal quantifier. These rules for x and x are analogous to the display introduction rules for the modal operators and and do not themselves allow the Barcan formula or its converse to be derived. En route from the minimal modal predicate logic to full first-order logic, axiomatic extensions are captured by purely structural sequent rules.  相似文献   

8.
We investigate uniform interpolants in propositional modal logics from the proof-theoretical point of view. Our approach is adopted from Pitts’ proof of uniform interpolationin intuitionistic propositional logic [15]. The method is based on a simulation of certain quantifiers ranging over propositional variables and uses a terminating sequent calculus for which structural rules are admissible. We shall present such a proof of the uniform interpolation theorem for normal modal logics K and T. It provides an explicit algorithm constructing the interpolants. Presented by Heinrich Wansing  相似文献   

9.
We present a modal logic for the class of subset spaces based on discretely descending chains of sets. Apart from the usual modalities for knowledge and effort the standard temporal connectives are included in the underlying language. Our main objective is to prove completeness of a corresponding axiomatization. Furthermore, we show that the system satisfies a certain finite model property and is decidable thus.  相似文献   

10.
We consider the problem of axiomatizing various natural successor logics for 2-dimensional integral spacetime. We provide axiomatizations in monomodal and multimodal languages, and prove completeness theorems. We also establish that the irreflexive successor logic in the standard modal language (i.e. the language containing and ) is not finitely axiomatizable.  相似文献   

11.
The classical propositional logic is known to be sound and complete with respect to the set semantics that interprets connectives as set operations. The paper extends propositional language by a new binary modality that corresponds to partial recursive function type constructor under the above interpretation. The cases of deterministic and non-deterministic functions are considered and for both of them semantically complete modal logics are described and decidability of these logics is established. Presented by Melvin Fitting  相似文献   

12.
Completeness of Certain Bimodal Logics for Subset Spaces   总被引:1,自引:0,他引:1  
Weiss  M. Angela  Parikh  Rohit 《Studia Logica》2002,71(1):1-30
Subset Spaces were introduced by L. Moss and R. Parikh in [8]. These spaces model the reasoning about knowledge of changing states.In [2] a kind of subset space called intersection space was considered and the question about the existence of a set of axioms that is complete for the logic of intersection spaces was addressed. In [9] the first author introduced the class of directed spaces and proved that any set of axioms for directed frames also characterizes intersection spaces.We give here a complete axiomatization for directed spaces. We also show that it is not possible to reduce this set of axioms to a finite set.  相似文献   

13.
14.
15.
Wolter  Frank 《Studia Logica》1997,58(2):229-259
This paper investigates partitions of lattices of modal logics based on superintuitionistic logics which are defined by forming, for each superintuitionistic logic L and classical modal logic , the set L[] of L-companions of . Here L[] consists of those modal logics whose non-modal fragments coincide with L and which axiomatize if the law of excluded middle p V p is added. Questions addressed are, for instance, whether there exist logics with the disjunction property in L[], whether L[] contains a smallest element, and whether L[] contains lower covers of . Positive solutions as concerns the last question show that there are (uncountably many) superclean modal logics based on intuitionistic logic in the sense of Vakarelov [28]. Thus a number of problems stated in [28] are solved. As a technical tool the paper develops the splitting technique for lattices of modal logics based on superintuitionistic logics and ap plies duality theory from [34].  相似文献   

16.
It is proved that all bimodal tense logics which contain the logic of the weak orderings and have unbounded depth do not have the interpolation property.  相似文献   

17.
Patrick Grim has presented arguments supporting the intuition that any notion of a totality of truths is incoherent. We suggest a natural semantics for various logics of belief which reflect Grim’s intuition. The semantics is a topological semantics, and we suggest that the condition can be interpreted to reflect Grim’s intuition. Beyond this, we present a natural canonical topological model for K4 and KD4.  相似文献   

18.
19.
20.
Goranko  Valentin 《Studia Logica》1998,61(2):179-197
A certain type of inference rules in (multi-) modal logics, generalizing Gabbay's Irreflexivity rule, is introduced and some general completeness results about modal logics axiomatized with such rules are proved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号