首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Observers indicated whether a single probe letter presented to the left visual field/right hemisphere (LVF-RH) or to the right visual field/left hemisphere (RVF-LH) matched one of two, three, four, or five set letters in both name and case. For positive trials during the initial experimental session, the slope of the linear memory set size reaction time function was increased by perceptually degrading the probe letter on LVF-RH trials, but not on RVF-LH trials. In addition, perceptual degradation of the probe letter increased the intercept of the memory set size function more on RVF-LH trials than on LVF-RH trials. During subsequent experimental sessions, the same pattern of intercept results was obtained but perceptual degradation of the probe no longer changed the slope for either LVF-RH or RVF-LH trials. However, the slopes were uniformly lower on RVF-LH trials than on LVF-RH trials. The major results are consistent with hypothesized right-hemisphere efficiency for early processing stages and left-hemisphere efficiency for serial processing of alphanumeric information. The results further illustrate the importance of separating stages of processing in studies of cerebral laterality and indicate that the relative difficulty of the various stages can be a determinant of laterality results.  相似文献   

2.
Three experiments examined the effects of stimulus duration, retinal eccentricity, and visual noise on the processing of human faces presented to the left visual field/right hemisphere (LVF-RH) and right visual field/left hemisphere (RVF-LH). In Experiment 1 observers identified which of 10 similar male faces was presented on a screen. The single face was presented for 10, 55, or 100 ms at 1 degree, 4 degrees, or 9 degrees of visual angle to the left or right of fixation. Decreasing stimulus duration and increasing retinal eccentricity lowered face recognition. The effect of duration was the same for LVF-RH and RVF-LH trials, but the detrimental effect of increasing retinal eccentricity was larger on LVF-RH trials than on RVF-LH trials. In Experiment 2 observers indicated whether a single face from this same set was a member of a memorized set of five positive faces. The probe face on each trial was presented alone or embedded in visual noise. Visual noise increased the error rate more on LVF-RH trials than on RVF-LH trials. This effect was replicated in Experiment 3, which also required observers to make a much easier discrimination between male and female faces. In the male/female task visual noise tended to impair performance more on RVF-LH trials than on LVF-RH trials, opposite the effect for the male/male task. These results are discussed in terms of hemispheric asymmetry for global versus local features of faces, the level of feature analysis demanded by a task, and the level of feature analysis most disrupted by perceptual degradation.  相似文献   

3.
This study investigated functional differences in the processing of visual temporal information between the left and right hemispheres (LH and RH). Participants indicated whether or not a checkerboard pattern contained a temporal gap lasting between 10 and 40 ms. When the stimulus contained a temporal signal (i.e. a gap), responses were more accurate for the right visual field-left hemisphere (RVF-LH) than for the left visual field-right hemisphere (LVF-RH). This RVF-LH advantage was larger for the shorter gap durations (Experiments 1 and 2), suggesting that the LH has finer temporal resolution than the RH, and is efficient for transient detection. In contrast, for noise trials (i.e. trial without temporal signals), there was a LVF-RH advantage. This LVF-RH advantage was observed when the entire stimulus duration was long (240 ms, Experiment 1), but was eliminated when the duration was short (120 ms, Experiment 2). In Experiment 3, where the gap was placed toward the end of the stimulus presentation, a LVF-RH advantage was found for noise trials whereas the RVF-LH advantage was eliminated for signal trials. It is likely that participants needed to monitor the stimulus for a longer period of time when the gap was absent (i.e. noise trials) or was placed toward the end of the presentation. The RH may therefore be more efficient in the sustained monitoring of visual temporal information whereas the LH is more efficient for transient detection.  相似文献   

4.
Right-handed Ss identified consonant-vowel-consonant (CVC) nonsense syllables presented tachistoscopically. The CVC on each trial was presented to the left visual field-right hemisphere (LVF-RH), to the right visual field-left hemisphere (RVF-LH), or the same CVC was presented to both visual fields (bilateral presentation). When recognition was incorrect, the pattern of errors was qualitatively different on LVF-RH and RVF-LH trials, suggesting that each cerebral hemisphere has its own preferred mode of processing the CVC stimuli. The qualitative pattern of errors on bilateral trials was identical to that obtained on LVF-RH trials. The bilateral results are described well by a model that assumes the mode of processing characteristic of the RH dominates on bilateral trials but is applied to both the LVF-RH and RVF-LH stimuli.  相似文献   

5.
Observers indicated whether two successively presented drawings of faces were identical or differed in one feature (hair, eyes, mouth, jaw). The first face of each pair was presented at the fixation point and the second was presented to the left visual field-right hemisphere (LVF-RH), right visual field-left hemisphere (RVF-LH), or to both visual fields simultaneously (BILATERAL). On DIFFERENT trials the RT of correct responses depended on which feature differed and the pattern of feature location effects was significantly different on LVF-RH and RVF-LH trials. On BILATERAL trials the feature location effect was identical to that obtained on RVF-LH trials and significantly different from that obtained on LVF-RH trials. In addition, the percentage of errors and RT of correct responses were both higher on BILATERAL trials than on unilateral trials. Implications of these results are considered for the concept of "metacontrol" in neurologically normal humans and for models of interhemispheric interaction.  相似文献   

6.
104 men and women were tested for visual field-hemispheric transfer of spatial information on a dot-localization task. Right-handed subjects showed significant improvement when stimuli were presented to the left visual field of the right hemisphere (LVF-RH) after practice on the same task presented to the right visual field of the left hemisphere (RVF-LH) first. No improvement was found when the task was presented in the reverse order (LVF-RH first followed by RVF-LH). It was concluded that, for right-handers, transfer of spatial information to the right hemisphere is facilitated while transfer to the left hemisphere is inhibited. Left-handed subjects demonstrated no significant improvement in either condition, suggesting inhibition or lack of transfer of spatial information in either direction. No sex differences were found in either right-handed or left-handed subjects. The findings suggest that there may be different mechanisms underlying the similarities in functional lateralization of women and left-handers.  相似文献   

7.
Accuracy and reaction time (RT) of judgments about sameness vs. difference of (a) names of two letters and (b) shapes of two nonverbal forms were examined for stimuli presented to the center, left (LVF), and right (RVF) visual fields. For same-name letter pairs during Experiment I, responses were more accurate and faster for LVF than for RVF trials on an initial 90-trial block, but this difference was reversed by a third 90-trial block. The RVF advantage for RT was maintained over Trial Blocks 4 and 5, given during a second session, but had disappeared on Trial Blocks 6 through 9 as RT reached the same asymptotic level for both visual fields. No LVF-RVF differences were obtained at any level of practice for different-name letter pairs or for any of the form pairs. Experiment II replicated the shift from LVF toward RVF advantage that occurred over the first three trial blocks of Experiment I and demonstrated that such a shift does not occur when the letters are perceptually degraded. The results were discussed in terms of differences in cerebral hemisphere specialization for visuospatial vs. abstract stages of letter processing and changes with practice in the relative difficulty of these stages.  相似文献   

8.
Positive words (e.g., faith) were recognised better when presented in white fonts than in black fonts, whereas the opposite was true for negative words (e.g., enemy). A neural basis for this type of association between emotional valence and brightness was investigated using a visual half-field paradigm. Positive and negative words were presented in black or white fonts and presented to the left visual field-right hemisphere (LVF-RH) or right visual field-left hemisphere (RVF-LH) in a word valence judgement task (i.e., positive vs. negative). A cross-over interaction between emotional valence and brightness was observed; valence judgements were facilitated when a positive word appeared in white and when a negative word appeared in black. This interaction was qualified by a higher-order interaction. The cross-over interaction appeared only for LVF-RH trials, suggesting that the right hemisphere was responsible for the association between emotional valence and brightness.  相似文献   

9.
This study investigates whether the right hemisphere has more flexible contrast gain control settings for the identification of spatial frequency. Right-handed participants identified 1 and 9 cycles per degree sinusoidal gratings presented either to the left visual field-right hemisphere (LVF-RH) or the right visual field-left hemisphere (RVF-LH). When luminance contrast was randomized across a wide range (20-60%), performance gradually improved with contrast in the LVF-RH. Conversely, performance in the RVF-LH was disrupted and saturated for 20 and 60% of contrast, respectively, leading to a LVF-RH advantage for these contrast levels. When contrast was blocked or randomized for a smaller range (30-50%), the LVF-RH advantage was diminished. Flexible contrast gain control is needed when contrast is randomized across a wide range, but not when it is blocked or randomized across a smaller range. The results therefore suggest that the right hemisphere is able to process spatial frequency information across a wider range of contrast levels than is the left hemisphere.  相似文献   

10.
Recent research on the division of processing between the two cerebral hemispheres has often employed two concurrent tasks to investigate the dynamic nature of hemispheric asymmetries. The experiment reported here explored the effects of two concurrent high-level cognitive tasks (memory retention and semantic categorization) on the direction and magnitude of hemispheric differences in the processing of words and pictures. Subjects were required to categorize words and pictures presented to either the left visual field-right hemisphere (LVF-RH) or the right visual field-left hemisphere (RVF-LH). The categorization could be performed while holding either verbal material in memory (digit span), pictorial material in memory (serial nonsense figure recognition), or with no concurrent memory task. The effects produced hemisphere-specific, material-nonspecific interference. The verbal task removed a RVF-LH advantage at word categorization and enhanced a LVF-RH advantage on picture categorization; the pictorial task interfered with picture categorization in the LVF-RH, while enhancing a RVF-LH advantage at word categorization. The results are discussed in terms of multiple resource models of hemisphere function, capacity limitations, and the functional locus of processing required to produce various dynamic hemispheric effects.  相似文献   

11.
In this study the influence of visuospatial and verbal memory loads on the identification of laterally presented letter strings was investigated. In the asymmetry task without concurrent loads, a clear right visual field advantage for letter identification was obtained. Hemisphere-specific effects due to concurrent loads were particularly observed when the difficulty of the load tasks was increased. The effects of visuospatial loads were found to be sex related, suggesting that under heavy load conditions mental rotation selectively overloads the processing capacity of the right hemisphere in males, while in females capacity limitations were observed in both hemispheres. Concurrent visuospatial loads produced more facilitation (or less interference) for letters in the outermost positions of each visual field than for letters in the innermost positions of each visual field. The results of the verbal memory load tasks revealed that an easy verbal load task facilitated performance which was particularly manifest for the right-most letter of both the left visual field and the right visual field. A difficult verbal memory load task interfered with recognition accuracy of letters which was most marked for the center letter in the right visual field. Letter position effects obtained in this study were interpreted in terms of various processing mechanisms influencing the serial position curves.  相似文献   

12.
The purpose of the present study was to examine Kosslyn's (1987) claim that the left hemisphere (LH) is specialized for the computation of categorical spatial representations and that the right hemisphere (RH) is specialized for the computation of coordinate spatial representations. Categorical representations involve making judgements about the relative position of the components of a visual stimulus (e.g., whether one component is above/below another). Coordinate representations involve calibrating absolute distances between the components of a visual stimulus (e.g., whether one component is within 5 mm of another). Thirty-two male and 32 female undergraduates were administered two versions of a categorical or a coordinate task over three blocks of 36 trials. Within each block, items were presented to the right visual field-left hemisphere (RVF-LH), the left visual field-right hemisphere (LVF-RH), or a centralized position. Overall, results were more supportive of Kosslyn's assertions concerning the role played by the RH in the computation of spatial representations. Specifically, subjects displayed an LVF-RH advantage when performing both versions of the coordinate task. The LVF-RH advantage on the coordinate task, however, was confirmed to the first block of trials. Finally, it was found that males were more likely than females to display faster reaction times (RTs) on coordinate tasks, slower RTs on categorical tasks, and an LVF-RH advantage in computing coordinate tasks.  相似文献   

13.
Right-handed participants performed simple visual judgments on nonverbal stimuli presented either to the left visual field-right hemisphere (LVF-RH) or to the right visual field-left hemisphere (RVF-LH). The stimuli were exposed for 40-120 msec, followed by a backward mask. When the stimuli were presented against a green background, an RVF-LH advantage was observed for the shortest exposure duration. This result supports the notion that the LH has finer temporal resolution than the RH. Imposition of a red background disrupted performance and eliminated the RVF-LH advantage for the shortest exposure duration. Because the red background attenuates functions of the magnocellular pathway, these results suggest that the magnocellular pathway contributes to the LH advantage for fine temporal resolution.  相似文献   

14.
The cerebral hemispheres have been proposed to engage different word recognition strategies: the left hemisphere implementing a parallel, and the right hemisphere, a sequential, analysis. To investigate this notion, we asked participants to name words with an early or late orthographic uniqueness point (OUP), presented horizontally to their left (LVF), right (RVF), or both fields of vision (BVF). Consistent with past foveal research, Experiment 1 produced a robust facilitatory effect of early OUP for RVF/BVF presentations, indicating the presence of sequential processes in lexical retrieval. The effect was absent for LVF trials, which we argue results from the disadvantaged position of initial letters of words presented in the LVF. To test this proposition, Experiment 2 assessed the discriminability of various letter positions in the visual fields using a bar-probe task. The obtained error functions highlighted the poor discriminability of initial letters in the LVF and latter letters in the RVF. To confirm that this asymmetry in initial letter acuity was responsible for the absent OUP effect for LVF presentations, Experiment 3 replicated Experiment 1 using vertical stimulus presentations. Results indicated a marked facilitatory effect of early OUP across visual fields, supporting our contention that the lack of OUP effect for LVF presentations in Experiment 1 resulted from poor discriminability of the initial letters. These findings confirm the presence of sequential processes in both left and right hemisphere word recognition, casting doubt on parallel models of word processing.  相似文献   

15.
Observers identified consonant–vowel–consonant trigrams with the letters arranged vertically by pronouncing the stimulus (treating the bottom letter as the first letter) and spelling it from bottom to top. On each trial, the trigram was presented to the left visual field/right hemisphere (LVF/RH), to the right visual field/left hemisphere (RVF/LH), or to both visual fields simultaneously (BILATERAL trials). Quantitative and qualitative visual field differences were identical to those found when observers used a more natural response output order, treating the top letter of the trigram as the first letter. The results suggest that, regardless of output order, attention is distributed across the three letters in a relatively slow, top-to-bottom fashion on LVF/RH and BILATERAL trials, whereas attention is distributed more rapidly and evenly across the three letters on RVF/LH trials.  相似文献   

16.
A visual search paradigm was employed to examine hemispheric serial and parallel processing. Stimulus arrays containing 4, 9, or 16 elements were tachistoscopically presented to the right visual field-left hemisphere (RVF-LH) or left visual field-right hemisphere (LVF-RH). Subjects judged whether all of the elements within an array were physically the same (all X's) or whether one (O) was different from the rest. Left hemisphere presentations were processed more quickly and accurately than LVF-RH presentations for all stimulus conditions. As the number of array elements increased, more errors and longer response times were obtained for different stimulus items whereas fewer errors and somewhat shorter response times were obtained for same stimulus items. These and previous results suggest that the left hemisphere obtains an advantage for visual search because of that hemisphere's superiority for fine-grained feature analysis rather than because of a fundamental hemispheric serial/parallel processing dichotomy.  相似文献   

17.
Two memory search experiments were conducted using vertically oriented four-letter names and human faces as stimuli. Subjects were required to indicate as quickly and as accurately as possible whether or not a single probe stimulus (presented for 150 msec to either the left or right visual field) was contained in a set of 2, 3, 4, or 5 items being held in short-term memory. The probe stimuli were presented alone (clear condition) or centrally embedded in a matrix of dots (degraded condition). In Experiment 1 (involving names), a right visual field/left hemisphere advantage was obtained and pinpointed at the encoding stage rather than at the memory comparison stage of the information-processing system. For Experiment 2 (involving human faces), no hemispheric advantage was readily observed. In each experiment, both the left hemisphere and the right hemisphere employed an abstract memory comparison operation from which the effects of probe degradation have been removed. These results are discussed in terms of their implications for various models of hemispheric asymmetry.  相似文献   

18.
Two different experimental procedures were used to examine (a) information-processing differences between two groups of subjects (Cs versus Vs) identified by the form of their conditioned eyeblinks; (b) information-processing differences between the right and left cerebral hemispheres; and (c) parallels between hypothesized C-V differences and right-left hemisphere differences. In the first experiment, the evocative command words BLINK and DON'T BLINK served as positive and negative conditioned stimuli. It was found that Vs gave more conditioned eyeblinks than Cs and that differential eyelid conditioning of Vs more than Cs was influenced by the semantic content of the stimuli. More importantly, the conditioning performance of Cs was more influenced by the semantic attributes of the stimuli when they were presented directly to the right visual field (left hemisphere) than when they were presented directly to the left visual field (right hemisphere). In contrast, the conditioning performance of Vs was equally influenced by the semantic attributes regardless of which hemisphere received direct stimulation. A second experiment was designed to determine whether such hemisphere-of-presentation differences for Cs versus Vs could also be obtained in a very different task. Subjects classified as Cs or Vs during a differential eyelid conditioning task then performed two same-different reaction time (RT) tasks that required discrimination of complex polygons in one case and the names of letters in another. On each RT trial both stimuli of a pair appeared briefly either in the center, left, or right visual field. For both Cs and Vs RTs to complex polygon pairs averaged 20 msec faster on left visual field trials than on right visual field trials, consistent with current hypotheses about right-hemisphere specialization for visuospatial processing. In contrast, the results for letter pairs generally confirmed the C-V differences found in Experiment 1. That is, the right visual field (left-hemisphere) advantage for these verbal stimuli was once again larger for Cs than for Vs. The present results suggest that the two groups of subjects (Cs versus Vs) differ qualitatively in the modes of information processing that they typically employ. The results also suggest that these different modes of processing are related to aspects of cerebral hemisphere organization and that even right-handed individuals may differ from each other in the extent to which each cerebral hemisphere is mobilized for a given experimental task. Such individual differences must be incorporated into both models of classical eyelid conditioning and models of cerebral hemisphere specialization.  相似文献   

19.
The cerebral balance of power: confrontation or cooperation?   总被引:5,自引:0,他引:5  
Two visual search experiments were carried out using as stimuli large letters made of small identical letters presented in right, or left, or central visual fields. Considering the spatial frequency contents of the stimuli as the critical variable, Experiment 1 showed that a left-field superiority could be obtained whenever a decision had to be made on a large (low frequency) letter alone, and a right-field advantage emerged when a small (high frequency) letter had to be processed. Experiment 2 showed that the two levels of structure of the stimulus were not encoded at the same rate and that at very brief exposure, only the large letter could be accurately identified. This was accompanied by a left-field superiority, whether or not the stimulus contained the target. These results are interpreted as revealing a differential sensitivity of the hemispheres to the spatial frequency contents of a visual image, the right hemisphere being more adept at processing early-available low frequencies and the left hemisphere operating more efficiently on later-available low frequencies. From these and other experiments reviewed, it is suggested that (a) cerebral lateralization of cognitive functions results from differences in sensorimotor resolution capacities of the hemispheres; (b) both hemispheres can process verbal and visuospatial information, analytically and holistically; (c) respective hemispheric competence is a function of the level of sensorimotor resolution required for processing the information available.  相似文献   

20.
Three experiments were conducted to examine the relative ability of the cerebral hemispheres to identify capital letters traced in the palms of the hands. In Experiment 1, letters were presented either right side up or upside down, and the subject's task was to name the letter aloud or point to an identical letter using the stimulated hand. Analysis of the accuracy data revealed that the left palm/right hemisphere (LP/RH) performed this task significantly better than did the right palm/left hemisphere (RP/LH), particularly when the stimuli were presented in the upside-down orientation. In Experiments 2 and 3, subjects performed the same letter identification task; however, on half the trials, they were required to maintain either a spatial or verbal concurrent memory load (i.e., a 24-point Vanderplas & Garvin form or six low-imagery nouns, respectively). In the no-load condition of Experiment 2 (spatial forms), the previously observed LP/RH advantage was replicated. However, in the load condition, this LP/RH superiority was no longer in evidence. In Experiment 3 (low-imagery nouns), the presence of a concurrent verbal task had minimal impact on the previously observed performance asymmetry as the LP/RH advantage was obtained in both the no-load and load conditions. The results of the three studies taken in composite suggest that (1) the operations utilized to identify letters traced in the palms of the hands are primarily spatial in nature and (2) that the observed performance asymmetry may be attributed to a right hemisphere superiority for the analysis and codification of information along a spatial dimension. These findings are discussed in terms of a "process-oriented" model of hemispheric asymmetry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号