首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Motor coordination has been too poorly defined to be a useful construct in studying the control of movement. In general, motor coordination involves controlling both the timing and the kinematics of movement. Yet the motor behaviors typically used for the study of coordination have required controlling only the timing or the spatial aspects of a movement. To understand better the basis of motor behavior, this study examined movement sequences, a class of movement in which both the timing and the kinematics must be controlled. In one experiment we studied a reaching and grasping movement sequence to characterize the central coordination of movement sequences. In another experiment we studied a throwing movement sequence to characterize the peripheral (kinesthetic) coordination of movement sequences. An heuristic model is presented to explain how central and peripheral mechanisms of coordination might interact to produce accurate movement.  相似文献   

2.
It is well known that movement sequences are initiated and executed more slowly as they become longer. Those effects of sequence length, which have been found to lessen with practice, have been attributed to the development of a single motor chunk that represents the entire sequence. But an increasingly efficient distribution of programming can also explain the effects. To examine the mechanisms underlying skill in executing keying sequences, the authors examined the performance of participants (N = 18) who practiced a discrete sequence-production task involving fixed sequences of 3 and 6 key presses. Detailed examination of the effects of extensive practice, of regularities in key pressing order, and of a preceding choice RT task on the production of those sequences showed that most participants executed the 6-key sequence as 2 or more successive segments and continued to do so in the various conditions. The preceding choice RT task restored the sequence-length effect in latency that had disappeared with practice. The present results suggest that practice induces the development of motor chunks, each representing a short segment, and with longer sequences a control scheme for concatenating the motor chunks. Segmentation of longer sequences appeared to be concealed by individual segmentation differences unless there were regularities that imposed a common segmentation pattern.  相似文献   

3.
Apraxia of Speech (AOS) is an impairment of motor programming. However, the exact nature of this deficit remains unclear. The present study examined motor programming in AOS in the context of a recent two-stage model [Klapp, S. T. (1995). Motor response programming during simple and choice reaction time: The role of practice. Journal of Experimental Psychology: Human Perception and Performance, 21, 1015–1027; Klapp, S. T. (2003). Reaction time analysis of two types of motor preparation for speech articulation: Action as a sequence of chunks. Journal of Motor Behavior, 35, 135–150] that proposes a preprogramming stage (INT) and a process that assigns serial order to multiple programs in a sequence (SEQ). The main hypothesis was that AOS involves a process-specific deficit in the INT (preprogramming) stage of processing, rather than in the on-line serial ordering (SEQ) and initiation of movement. In addition, we tested the hypothesis that AOS involves a central (i.e., modality-general) motor programming deficit. We used a reaction time paradigm that provides two dependent measures: study time (the amount of time for participants to ready a motor response; INT), and reaction time (time to initiate movement; SEQ). Two experiments were conducted to examine INT and SEQ in AOS: Experiment 1 involved finger movements, Experiment 2 involved speech movements analogous to the finger movements. Results showed longer preprogramming time for patients with AOS but normal sequencing and initiation times, relative to controls. Together, the findings are consistent with the hypothesis of a process-specific, but central (modality-independent) deficit in AOS; alternative explanations are also discussed.  相似文献   

4.
The fluency of cognitive processes influences many judgments: Fluently processed statements are judged to be true, fluently processed instances are judged to be frequent, and fluently processed names are judged to be famous. According to a cue-learning approach, these effects of experienced fluency arise because the fluency cue is interpreted differentially in accordance with its learned validity. Two experiments tested this account by manipulating the fluency cue's validity. Fluency was manipulated by color contrast (Experiment 1) and by required mental rotation (Experiment 2). If low fluency was correlated with a required affirmative or "old" response (and high fluency with a negative or "new" response) in a training phase, participants showed a reversal of the classic pattern in the recognition phase: Low-fluency stimuli had a higher probability than high-fluency stimuli to be classified as old. Thus, the interpretation and therefore the impact of fluency depended on the cue's learned validity.  相似文献   

5.
Impaired facial affect recognition is characteristic of schizophrenia and has been related to impaired social function, but the relevant neural mechanisms have not been fully identified. The present study sought to identify the role of oscillatory alpha activity in that deficit during the process of facial emotion recognition. Neuromagnetic brain activity was monitored while 44 schizophrenia patients and 44 healthy controls viewed 5-s videos showing human faces gradually changing from neutral to fearful or happy expressions or from the neutral face of one poser to the neutral face of another. Recognition performance was determined separately by self-report. Relative to prestimulus baseline, controls exhibited a 10- to 15-Hz power increase prior to full recognition and a 10- to 15-Hz power decrease during the postrecognition phase. These results support recent proposals about the function of alpha-band oscillations in normal stimulus evaluation. The patients failed to show this sequence of alpha power increase and decrease and also showed low 10- to 15-Hz power and high 10- to 15-Hz connectivity during the prestimulus baseline. In light of the proposal that a combination of alpha power increase and functional disconnection facilitates information intake and processing, the finding of an abnormal association of low baseline alpha power and high connectivity in schizophrenia suggests a state of impaired readiness that fosters abnormal dynamics during facial affect recognition.  相似文献   

6.
To test the hypothesis that the ability to actively represent and maintain context information in a central function of working memory and that a disturbance in this function contributes to cognitive deficits in schizophrenia, the authors modified 3 tasks--the AX version of the Continuous Performance Test, Stroop, and a lexical disambiguation task--and administered them to patients with schizophrenia as well as to depressed and healthy controls. The results suggest an accentuation of deficits in patients with schizophrenia in context-sensitive conditions and cross-task correlations of performance in these conditions. However, the results do not definitively eliminate the possibility of a generalized deficit. The significance of these findings is discussed with regard to the specificity of deficits in schizophrenia and the hypothesis concerning the neural and cognitive mechanisms that underlie these deficits.  相似文献   

7.
The Rhythmic Movement Test (RMT) evaluates temporal and amplitude parameterization and fluency of movement execution in a series of rhythmic arm movements under different sensory conditions. The RMT was used in combination with a jumping and a drawing task, to evaluate 36 children with Developmental Coordination Disorder (DCD) and a matched control group. RMT errors in space and in time were significantly larger for children with DCD. Omission of sensory information decreased the accuracy of movement parameterization in children with DCD more than in the control group, suggesting that children with DCD have more problems in building up an internal representation of the movement. Errors in time correlated significantly with the jumping and drawing task, while errors in space did not. Deficits of temporal movement parameterization might be one of the underlying causes of poor motor performance in some children with DCD.  相似文献   

8.
Rats with medial prefrontal cortex or sham control lesions were tested on an eight-arm radial maze task to examine memory for the temporal order of a variable and a constant sequence of spatial locations as a function of temporal distance. During the study phase of each trial, rats were allowed to visit each of eight arms once in an order that was randomly selected or fixed for that trial. The test phase required the rats to choose which of two arms occurred earlier in the sequence of arms visited during the study phase. The arms selected as test arms varied according to temporal distance (0, 2, 4, or 6) or the number of arms that occurred between the two test arms in the study phase. For the variable sequences based on new information, control rats showed an increasing temporal distance function. Relative to control rats, medial prefrontal cortex-lesioned rats displayed a temporal order memory deficit across all distances. For the constant sequence based on familiar information, control rats performed well across all distances. Relative to controls, the medial prefrontal cortex-lesioned rats displayed a performance deficit. The results support the idea that the medial prefrontal cortex contributes to mnemonic operations associated with temporal order for new and familiar spatial location information.  相似文献   

9.
This paper argues that working memory is heavily involved in language acquisition as (a) a major part of language learning is the learning of sequences, (b) working memory allows short-term maintenance of sequence information, and (c) short-term rehearsal of sequences promotes the consolidation of long-term memories of language sequences. It first reviews evidence supporting this position. Next it presents an experiment that demonstrates that subjects encouraged to rehearse foreign language (FL) utterances are better than both silent controls and subjects who are prevented from rehearsal by articulatory suppression at (a) learning to comprehend and translate FL words and phrases, (b) explicit metalinguistic knowledge of the detailed content of grammatical regularities, (c) acquisition of the FL forms of words and phrases, (d) accuracy in FL pronunciation, and (e) some aspects of productive (but not receptive) grammatical fluency and accuracy. Finally, it describes possible mechanisms underlying these effects.  相似文献   

10.
PurposeAdults who stutter speak more fluently during choral speech contexts than they do during solo speech contexts. The underlying mechanisms for this effect remain unclear, however. In this study, we examined the extent to which the choral speech effect depended on presentation of intact temporal speech cues. We also examined whether speakers who stutter followed choral signals more closely than typical speakers did.Method8 adults who stuttered and 8 adults who did not stutter read 60 sentences aloud during a solo speaking condition and three choral speaking conditions (240 total sentences), two of which featured either temporally altered or indeterminate word duration patterns. Effects of these manipulations on speech fluency, rate, and temporal entrainment with the choral speech signal were assessed.ResultsAdults who stutter spoke more fluently in all choral speaking conditions than they did when speaking solo. They also spoke slower and exhibited closer temporal entrainment with the choral signal during the mid- to late-stages of sentence production than the adults who did not stutter. Both groups entrained more closely with unaltered choral signals than they did with altered choral signals.ConclusionsFindings suggest that adults who stutter make greater use of speech-related information in choral signals when talking than adults with typical fluency do. The presence of fluency facilitation during temporally altered choral speech and conversation babble, however, suggests that temporal/gestural cueing alone cannot account for fluency facilitation in speakers who stutter. Other potential fluency enhancing mechanisms are discussed.Educational Objectives: The reader will be able to (a) summarize competing views on stuttering as a speech timing disorder, (b) describe the extent to which adults who stutter depend on an accurate rendering of temporal information in order to benefit from choral speech, and (c) discuss possible explanations for fluency facilitation in the presence of inaccurate or indeterminate temporal cues.  相似文献   

11.
The concept of a motor program has been used to interpret a diverse range of empirical findings related to preparation and initiation of voluntary movement. In the absence of an underlying mechanism, its exploratory power has been limited to that of an analogy with running a stored computer program. We argue that the theory of cortical cell assemblies suggests a possible neural mechanism for motor programming. According to this view, a motor program may be conceptualized as a cell assembly, which is stored in the form of strengthened synaptic connections between cortical pyramidal neurons. These connections determine which combinations of corticospinal neurons are activated when the cell assembly is ignited. The dynamics of cell assembly ignition are considered in relation to the problem of serial order. These considerations lead to a plausible neural mechanism for the programming of movements and movement sequences that is compatible with the effects of precue information and sequence length on reaction times. Anatomical and physiological guidelines for future quantitative models of cortical cell assemblies are suggested. By taking into account the parallel re-entrant loops between the cerebral cortex and basal ganglia, the theory of cortical cell assemblies suggests a mechanism for motor plans that involve longer sequences. The suggested model is compared with other existing neural network models for motor programming.  相似文献   

12.
Intentions are central to guiding actions to their completion because they generate expectations which precede the realization of a task. This ability to manage time was investigated by using a cognitive task which involves several highly integrated processes: sequential learning, explicit processing, and working memory. In this task, participants are required to explicitly learn a repeating color sequence before receiving an instruction to give an anticipatory motor response concerning the next element. Two types of sequences (temporal and spatial) and three experimental conditions were tested in both a group of normal participants and a group of schizophrenic patients. Schizophrenics were included because their condition is known to alter conscious executive function. Our results showed that schizophrenic patients have a strong deficit in performing anticipation tasks. Although they learned the sequences almost normally, their anticipatory ability was reduced in comparison to normal participants in all the tested conditions. These results expand the notion of a working memory deficit in schizophrenia and bear strong implications for understanding executive disorders observed in such patients.  相似文献   

13.
Learning of sensory sequences in cerebellar patients   总被引:3,自引:0,他引:3       下载免费PDF全文
A possible role of the cerebellum in detecting and recognizing event sequences has been proposed. The present study sought to determine whether patients with cerebellar lesions are impaired in the acquisition and discrimination of sequences of sensory stimuli of different modalities. A group of 26 cerebellar patients and 26 controls matched for age, sex, handedness, musicality, and level of education were tested. Auditory and visual sensory sequences were presented out of different sensory pattern categories (tones with different acoustic frequencies and durations, visual stimuli with different spatial locations and colors, sequential vision of irregular shapes) and different ranges of inter-cue time intervals (fast and slow). Motor requirements were small, with vocal responses and no time restrictions. Perception of visual and acoustic stimuli was generally preserved in patients and controls. The number of errors was significantly higher in the faster tempo of sequence presentation in learning of sequences of tones of different frequencies and in learning of sequences of visual stimuli of different spatial locations and different colors. No difference in tempo between the groups was shown. The total number of errors between the two groups was identical in the sequence conditions. No major disturbances in acquisition or discrimination of various sensory sequences were observed in the group of cerebellar patients. Sequence learning may be impaired only in tasks with significant motor demands.  相似文献   

14.
This study tested the procedural deficit hypothesis of specific language impairment (SLI) by comparing children's performance in two motor procedural learning tasks and an implicit verbal sequence learning task. Participants were 7‐ to 11‐year‐old children with SLI (n = 48), typically developing age‐matched children (n = 20) and younger typically developing children matched for receptive grammar (n = 28). In a serial reaction time task, the children with SLI performed at the same level as the grammar‐matched children, but poorer than age‐matched controls in learning motor sequences. When tested with a motor procedural learning task that did not involve learning sequential relationships between discrete elements (i.e. pursuit rotor), the children with SLI performed comparably with age‐matched children and better than younger grammar‐matched controls. In addition, poor implicit learning of word sequences in a verbal memory task (the Hebb effect) was found in the children with SLI. Together, these findings suggest that SLI might be characterized by deficits in learning sequence‐specific information, rather than generally weak procedural learning.  相似文献   

15.
Several visuo-motor tasks can be used to demonstrate biases towards left hemispace in schizophrenic patients, suggesting a minor right hemineglect. Recent studies in neglect patients used a new number bisection task to highlight a lateralized defect in their visuo-spatial representation of numbers. To test a possible lateralized representational deficit in schizophrenia, we used the number bisection task in 11 schizophrenic patients compared to 11 healthy controls. Participants were required to orally indicate the central number of an interval orally presented. Whereas healthy subjects showed no significant bias, schizophrenic patients presented a significant leftward bias. Therefore, these results suggest an impairment in higher order representations of the number space in patients with schizophrenia, an impairment that is qualitatively similar to the deficit described in neglect patients.  相似文献   

16.
The concept of a motor program has been used to interpret a diverse range of empirical findings related to preparation and initiation of voluntary movement. In the absence of an underlying mechanism, its explanatory power has been limited to that of an analogy with running a stored computer program. We argue that the theory of cortical cell assemblies suggests a possible neural mechanism for motor programming. According to this view, a motor program may be conceptualized as a cell assembly, which is stored in the form of strengthened synaptic connections between cortical pyramidal neurons. These connections determine which combinations of corticospinal neurons are activated when the cell assembly is ignited. The dynamics of cell assembly ignition are considered in relation to the problem of serial order. These considerations lead to a plausible neural mechanism for the programming of movements and movement sequences that is compatible with the effects of precue information and sequence length on reaction times. Anatomical and physiological guidelines for future quantitative models of cortical cell assemblies are suggested. By taking into account the parallel, re-entrant loops between the cerebral cortex and basal ganglia, the theory of cortical cell assemblies suggests a mechanism for motor plans that involve longer sequences. The suggested model is compared with other existing neural network models for motor programming.  相似文献   

17.
We suggest that well-formedness judgements in conjunction with L.L. Jacoby's (1991) process dissociation procedure and an appropriate measurement model can be used to obtain measures of implicit and explicit sequence knowledge. We introduce a new measurement model designed specifically for the sequence learning task. The model assumes that sequence identification is based on recollection, perceptual or motor fluency, systematicity detection, and guessing. The model and the application of the process dissociation procedure were empirically evaluatedusing auditory eventsequences. In Experiment 1, the parameterreflecting recollection was higher in an intentional than in an incidental learning condition. Experiment 2 showed that random sequences interspersed among the systematic sequences during the acquisition phase may change this pattern of results. A manipulation of processing fluency in Experiment 3 was reflected in the appropriate model parameter. In sum, the new measurement model and the application of the process dissociation procedure appear to be useful tools in sequence learning research.  相似文献   

18.
People tend to prefer fluently processed over harder to process information. In this study we examine two issues concerning fluency and preference. First, previous research has pre-selected fluent and non-fluent materials. We did not take this approach yet show that the fluency of individuals’ idiosyncratic on-line interactions with a given stimulus can influence preference formation. Second, while processing fluency influences preference, the opposite also may be true: preferred stimuli could be processed more fluently than non-preferred. Participants performed a visual search task either before or after indicating their preferred images from an array of either paintings by Kandinsky or decorated coffee mugs. Preferred stimuli were associated with fluent processing, reflected in facilitated search times. Critically, this was only the case for participants who gave their preferences after completing the visual search task, not for those stating preferences prior to the visual search task. Our results suggest that the spontaneous and idiosyncratic experience of processing fluency plays a role in forming preference judgments and conversely that our first impressions of preference do not drive response fluency.  相似文献   

19.
Developmental coordination disorder (DCD) is a neurodevelopmental condition affecting motor coordination in children and adults. Here, EEG signals elicited by visual and tactile stimuli were recorded while adult participants with and without probable DCD (pDCD) performed a motor task. The task cued reaching movements towards a location in visible peripersonal space as well as an area of unseen personal space. Event-related potentials elicited by visual and tactile stimuli revealed that visual processing was strongly affected by movement preparation in the pDCD group, even more than in controls. However, in contrast to the controls, tactile processing in unseen space was unaffected by movement preparation in the pDCD group. The selective use of sensory information from vision and proprioception is fundamental for the adaptive control of movements, and these findings suggest that this is impaired in DCD. Additionally, the pDCD group showed attenuated motor rhythms (beta: 13–30 Hz) over sensorimotor regions following cues to prepare movements towards unseen personal space. The results reveal that individuals with pDCD exhibit differences in the neural mechanisms of spatial selection and action preparation compared to controls, which may underpin the sustained difficulties they experience. These findings provide new insights into the neural mechanisms potentially disrupted in this highly prevalent disorder.  相似文献   

20.
The author assessed the mechanisms underlying skilled production of keying sequences in the discrete sequence-production task by examining the effect of sequence length on mean element execution rate (i.e., the rate effect). To that end, participants (N = 9) practiced fixed movement sequences consisting of 2, 4, and 6 key presses for a total of 588 trials per sequence. In the subsequent test phase, the sequences were executed with and without a verbal short-term memory task in both simple and choice reaction time (RT) paradigms. The rate effect was obtained in the discrete sequence-production task-including the typical quadratic increase in sequence execution time (SET, which excludes RT) with sequence length. The rate effect resulted primarily from 6-key sequences that included 1 or 2 relatively slow elements at individually different serial positions. Slowing of the depression of the 2nd response key (R2) in the 2-key sequence reduced the rate effect in the memory task condition, and faster execution of the 1st few elements in each sequence amplified the rate effect in simple RT. Last, the time to respond to random cues increased with position, suggesting that the mechanisms that underlie the rate effect in new sequences and in familiar sequences are different. The data were in line with the notion that coding of longer keying sequences involves motor chunks for the individual sequence segments and information on how those motor chunks are to be concatenated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号