首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We tested 6 chimpanzees (Pan troglodytes), 3 orangutans (Pongo pygmaeus), 4 bonobos (Pan paniscus), and 2 gorillas (Gorilla gorilla) in the reversed reward contingency task. Individuals were presented with pairs of quantities ranging between 0 and 6 food items. Prior to testing, some experienced apes had solved this task using 2 quantities while others were totally na?ve. Experienced apes transferred their ability to multiple-novel pairs after 6 to 19 months had elapsed since their initial testing. Two out of 6 na?ve apes (1 chimpanzee, 1 bonobo) solved the task--a proportion comparable to that of a previous study using 2 pairs of quantities. Their acquisition speed was also comparable to the successful subjects from that study. The ratio between quantities explained a large portion of the variance but affected na?ve and experienced individuals differently. For smaller ratios, na?ve individuals were well below 50% correct and experienced ones were well above 50%, yet both groups tended to converge toward 50% for larger ratios. Thus, some apes require no procedural modifications to overcome their strong bias for selecting the larger of 2 quantities.  相似文献   

2.
When presented with a choice between 1 and 3 pieces of food in a type of reversed contingency task, 4 cotton-top tamarins (Saguinus oedipus) consistently chose the 3 pieces of food and received nothing, even though the choice of 1 piece would have yielded 3. However, in a task in which the tamarins received the 1 piece of food when they chose it, all subjects learned to select 1 over 3. Thus, the tamarins' prior failure on the reversed contingency task did not result entirely from an inherent inability to suppress the prepotent response of reaching to the larger of 2 quantities of food. After the experience of selecting the smaller quantity and receiving it, all of the tamarins solved the version of the reversed contingency task that they failed initially. These results suggest that the tamarins' initial failure may have reflected a difficulty with selecting an alternative response option.  相似文献   

3.
To explore the relationship between problem solving and inhibitory control, the authors present 4 experiments on cotton-top tamarins (Saguinus oedipus) using a reverse-reward contingency task. In Experiment 1, 1 group of tamarins was given a choice between a small and a large quantity of food. Whichever quantity the tamarins reached for first, they received the alternative. The tamarins consistently picked the larger quantity, thereby receiving the smaller. A 2nd group of tamarins was given the same task, except that if they reached for the larger quantity of food, they received nothing. The tamarins continued to pick the larger quantity, even though this resulted in no food. In addition, most of the tamarins continued to pick the larger quantity even when the food payoff for choosing the smaller quantity was increased (Experiment 2) or when the visual salience of the food was reduced (Experiment 3). Experiment 4 was based on the finding that chimpanzees (Pan troglodytes) that have been trained on the concept of number can solve the reversed contingency task if the food is replaced by Arabic numerals. With the help of a color association, and a higher cost incurred by picking the color associated with 3 food items, the tamarins learned to pick the color associated with 1 food item. These results are compared with those obtained from studies of other primate species, highlighting the importance of comparative studies of problem solving that use comparable methods.  相似文献   

4.
Squirrel monkeys (Saimiri sciureus) that had learned to reach toward 1 piece of food instead of 4 in a reverse-reward contingency were tested after an 8-month delay with no intervening relevant experiences. All monkeys except 1 continued to show inhibitory control by reliably reaching toward the smaller quantity, most of them doing so within 2 sessions. Performance was maintained when a low-preference food replaced prized foods as arrays and rewards. When the quantities 1 and 4 were replaced with different ones, there was strong evidence of transposition at group level, although individual differences in bias toward the smaller quantities became apparent. Individual differences in mastering the original task more than 8 months previously were quite stable, suggesting robustness in the operations required for this form of self-control.  相似文献   

5.
Many species can choose between two visual sets of stimuli on the basis of quantity. This is true when sets are both visible, or are presented one set at a time or even one item at a time. However, we know comparatively little about how well nonhuman animals can compare auditory quantities. Here, three chimpanzees (Pan troglodytes) chose between two sets of food items when they only heard each item fall into different containers rather than seeing those items. This method prevented the chimpanzees from summing the amount of visible food they saw because there were no visual cues. Chimpanzees performed well, and their performance matched that of previous experiments with regard to obeying Weber's law. They also performed well with comparisons between a sequentially presented auditory set and a fully visible set, demonstrating that duration of presentation was not being used as a cue. In addition, they accommodated empty sets into these judgments, although not perfectly. Thus, chimpanzees can judge auditory quantities in flexible ways that show many similarities to how they compare visual quantities.  相似文献   

6.
The authors examined quantity-based judgments for up to 10 items for simultaneous and sequential whole sets as well as for sequentially dropped items in chimpanzees (Pan troglodytes), gorillas (Gorilla gorilla), bonobos (Pan paniscus), and orangutans (Pongo pygmaeus). In Experiment 1, subjects had to choose the larger of 2 quantities presented in 2 separate dishes either simultaneously or 1 dish after the other. Representatives of all species were capable of selecting the larger of 2 quantities in both conditions, even when the quantities were large and the numerical distance between them was small. In Experiment 2, subjects had to select between the same food quantities sequentially dropped into 2 opaque cups so that none of the quantities were ever viewed as a whole. The authors found some evidence (albeit weaker) that subjects were able to select the larger quantity of items. Furthermore, the authors found no performance breakdown with the inclusion of certain quantities. Instead, the ratio between quantities was the best performance predictor. The authors conclude that quantity-based judgments rely on an analogical system, not a discrete object file model or perceptual estimation mechanism, such as subitizing.  相似文献   

7.
Problem solving often relies on generating new responses while inhibiting others, particularly prepotent ones. A paradigm to study inhibitory abilities is the reverse contingency task (Boysen and Berntson in J Exp Psychol Anim Behav Process 21:82–86, 1995), in which two different quantities of food are offered to an individual who receives the array he did not choose. Therefore, mastery of the task demands selecting the smaller quantity to obtain the larger one. Several non-human primates have been tested in the reverse contingency task. To date, only great apes and rhesus monkeys (Macaca mulatta) have succeeded in the original task, with no need of procedural modifications as the large-or-none contingency, correction trials or symbolic stimuli substituting for actual food quantities. Here, four mangabeys were presented with two stimulus arrays of one and four raisins in the context of the reverse contingency task. Three of them learned to perform the task well above chance without a modified procedure. They also reached above-chance performance when presented with two stimulus arrays of zero and four raisins, despite the initial difficulty of choosing a null quantity. After a period of 7–10 months, in which the animals were not tested on any task, all three subjects continued to perform well, even when presented with novel quantity pairs.  相似文献   

8.
Summation and numerousness judgments by 2 chimpanzees (Pan troglodytes) were investigated when 2 quantities of M&Ms were presented sequentially, and the quantities were never viewed in their totality. Each M&M was visible only before placement in 1 of 2 cups. In Experiment 1, sets of 1 to 9 M&Ms were presented. In Experiment 2, the quantities in each cup were presented as 2 smaller sets (e.g., 2 + 2 vs. 4 + 1). In Experiment 3, the quantities were presented as 3 smaller sets (e.g., 2 + 2 + 3 vs. 3 + 4 + 1). In Experiment 4, an M&M was removed from 1 set before the chimpanzees' selection. In Experiments 1 and 2, the chimpanzees selected the larger quantity on significantly more trials than would be predicted by chance. In Experiments 3 and 4, 1 chimpanzee performed at a level significantly better than chance. Therefore, chimpanzees mentally represent quantity and successfully combine and compare nonvisible, sequentially presented sets of items.  相似文献   

9.
An understanding of Piagetian liquid conservation was investigated in 4 bonobos (Pan paniscus), 5 chimpanzees (Pan troglodytes), and 5 orangutans (Pongo pygmaeus). The apes were tested in the ability to track the larger of 2 quantities of juice that had undergone various kinds of transformations. The accuracy of the apes' judgment depended on the shape or number of containers into which the larger quantity was transferred. The apes made their choice mainly on the basis of visual estimation but showed modest success when the quantities were occluded. The results suggest that the apes rely to a greater extent on visual information, although they might have some appreciation of the constancy of liquid quantities.  相似文献   

10.
The authors administered a series of object displacement tasks to 24 great apes and 24 30-month-old children (Homo sapiens). Objects were placed under 1 or 2 of 3 cups by visible or invisible displacements. The series included 6 tasks: delayed response, inhibition test, A not B, rotations, transpositions, and object permanence. Apes and children solved most tasks performing at comparable levels except in the transposition task, in which apes performed better than children. Ape species performed at comparable levels in all tasks except in single transpositions, in which chimpanzees (Pan troglodytes) and bonobos (Pan paniscus) performed better than gorillas (Gorilla gorilla) and orangutans (Pongo pygmeaus). All species found nonadjacent trials and rotations especially difficult. The number of elements that changed locations, the type of displacement, and having to inhibit predominant reaching responses were factors that negatively affected the subjects' performance.  相似文献   

11.
To assess the relative salience of colour and quantity cues, squirrel monkeys previously trained to reach for the smaller of two quantities of food in a reverse-reward contingency task received colour discrimination training. After initial failure to discriminate between two colours of dots under a differential reinforcement regime, they learned the task when the S- colour was associated with zero reward. The monkeys then showed good retention on the original reverse-reward task of 1 versus 4 with pairs of dots presented in S+ or S- colours. However, on "mismatch" trials of 1S- versus 4S+ , only 2 of 4 monkeys tested showed a preference--1 monkey chose based on quantity, the other based on colour. Individual differences and the possible roles of overshadowing and blocking are discussed.  相似文献   

12.
To assess the relative salience of colour and quantity cues, squirrel monkeys previously trained to reach for the smaller of two quantities of food in a reverse-reward contingency task received colour discrimination training. After initial failure to discriminate between two colours of dots under a differential reinforcement regime, they learned the task when the S? colour was associated with zero reward. The monkeys then showed good retention on the original reverse-reward task of 1 versus 4 with pairs of dots presented in S + or S? colours. However, on “mismatch” trials of 1S? versus 4S + , only 2 of 4 monkeys tested showed a preference—1 monkey chose based on quantity, the other based on colour. Individual differences and the possible roles of overshadowing and blocking are discussed.  相似文献   

13.
Rumbaugh, Savage-Rumbaugh, and Hegel (1987) reported that two chimpanzees (Pan troglodytes) could select, with better than 90% accuracy, the greater of two paired quantities of chocolate chips. In that study, no one quantity of chocolates (from 0 through 5) was used in both pairs on a given trial. We investigated the effect of having one quantity in common (CQ) in both pairs. Whether the other quantities (OQs) of chocolates were both less than or greater than the CQ, summation still occurred. Accuracy was primarily a function of the ratios of sums to be differentiated. This finding substantiated the earlier conclusion that summation was based on both quantities of each pair and not on some simpler process such as the avoidance of the tray with the smallest single amount or selection of the tray with the single largest amount.  相似文献   

14.
Summation in the chimpanzee (Pan troglodytes)   总被引:3,自引:0,他引:3  
In this research, we asked whether 2 chimpanzee (Pan troglodytes) subjects could reliably sum across pairs of quantities to select the greater total. Subjects were allowed to choose between two trays of chocolates. Each tray contained two food wells. To select the tray containing the greater number of chocolates, it was necessary to sum the contents of the food wells on each tray. In experiments where food wells contained from zero to four chocolates, the chimpanzees chose the greater value of the summed wells on more than 90% of the trials. In the final experiment, the maximum number of chocolates assigned to a food well was increased to five. Choice of the tray containing the greater sum still remained above 90%. In all experiments, subjects reliably chose the greater sum, even though on many trials a food well on the "incorrect" tray held more chocolates than either single well on the "correct" tray. It was concluded that without any known ability to count, these chimpanzees used some process of summation to combine spatially separated quantities. Speculation regarding the basis for summation includes consideration of perceptual fusion of pairs of quantities and subitization.  相似文献   

15.
Recent assessments have shown that capuchin monkeys, like chimpanzees and other Old World primate species, are sensitive to quantitative differences between sets of visible stimuli. In the present study, we examined capuchins’ performance in a more sophisticated quantity judgment task that required the ability to form representations of food quantities while viewing the quantities only one piece at a time. In three experiments, we presented monkeys with the choice between two sets of discrete homogeneous food items and allowed the monkeys to consume the set of their choice. In Experiments 1 and 2, monkeys compared an entirely visible food set to a second set, presented item-by-item into an opaque container. All monkeys exhibited high accuracy in choosing the larger set, even when the entirely visible set was presented last, preventing the use of one-to-one item correspondence to compare quantities. In Experiment 3, monkeys compared two sets that were each presented item-by-item into opaque containers, but at different rates to control for temporal cues. Some monkeys performed well in this experiment, though others exhibited near-chance performance, suggesting that this species’ ability to form representations of food quantities may be limited compared to previously tested species such as chimpanzees. Overall, these findings support the analog magnitude model of quantity representation as an explanation for capuchin monkeys’ quantification of sequentially presented food items.
Theodore A. EvansEmail:
  相似文献   

16.
The authors previously reported that chimpanzees (Pan troglodytes) showed a striking bias to select the larger of 2 candy arrays, despite a reversed reward contingency in which the animals received the smaller, nonselected array as a reward, except when Arabic numerals were used as stimuli. A perceptual or incentive-based interference occurred that was overcome by symbolic stimuli. The authors of the present study examined the impact of element size in choice arrays, using 1 to 5 large and small candies. Five test-sophisticated chimpanzees selected an array from the 2 presented during each trial. Their responses were not optimal, as animals generally selected arrays with larger total mass; thus, they received the smaller remaining array as a reward. When choice stimuli differed in size and quantity, element size was more heavily weighted, although choices reflected total candy mass. These results replicate previous findings showing chimpanzees' difficulties with quantity judgments under reverse reward contingencies and also show that individual item size exerts a more powerful interference effect.  相似文献   

17.
Although many studies have shown that nonhuman animals can choose the larger of two discrete quantities of items, less emphasis has been given to discrimination of continuous quantity. These studies are necessary to discern the similarities and differences in discrimination performance as a function of the type of quantities that are compared. Chimpanzees made judgments between continuous quantities (liquids) in a series of three experiments. In the first experiment, chimpanzees first chose between two clear containers holding differing amounts of juice. Next, they watched as two liquid quantities were dispensed from opaque syringes held above opaque containers. In the second experiment, one liquid amount was presented by pouring it into an opaque container from an opaque syringe, whereas the other quantity was visible the entire time in a clear container. In the third experiment, the heights at which the opaque syringes were held above opaque containers differed for each set, so that sometimes sets with smaller amounts of juice were dropped from a greater height, providing a possible visual illusion as to the total amount. Chimpanzees succeeded in all tasks and showed many similarities in their continuous quantity estimation to how they performed previously in similar tasks with discrete quantities (for example, performance was constrained by the ratio between sets). Chimpanzees could compare visible sets to nonvisible sets, and they were not distracted by perceptual illusions created through various presentation styles that were not relevant to the actual amount of juice dispensed. This performance demonstrated a similarity in the quantitative discrimination skills of chimpanzees for continuous quantities that matches that previously shown for discrete quantities.  相似文献   

18.
Abstracting generalities from concrete experience allows the application of acquired knowledge to novel situations, a hallmark of primate cognition. Abstraction may also enable some animals to overcome prepotent biases, by allowing them to treat prepotent stimuli and responses more flexibly. The aim of the current study was to determine whether rhesus macaques (Macaca mulatta) could generalize successful performance on an executive control task with one training exemplar to novel exemplars. Three monkeys learned a reverse-reward task in which they chose between one and four food items. They had to select the smaller quantity to receive the larger one, and so had to inhibit the prepotent selection of the larger quantity. After they learned the task, a transfer test assessed whether they had learned only about the quantities experienced or whether they could generalize to novel quantities. All three rhesus monkeys spontaneously generalized to novel quantities, showing that this species has the ability to generalize significantly beyond the immediate perceptual experience and use this ability to control lower-level, prepotent responses.  相似文献   

19.
Bonobos (Pan paniscus; n = 4), chimpanzees (Pan troglodytes; n = 12), gorillas (Gorilla gorilla; n = 8), and orangutans (Pongo pygmaeus; n = 6) were presented with 2 cups (1 baited) and given visual or auditory information about their contents. Visual information consisted of letting subjects look inside the cups. Auditory information consisted of shaking the cup so that the baited cup produced a rattling sound. Subjects correctly selected the baited cup both when they saw or heard the food. Nine individuals were above chance in both visual and auditory conditions. More important, subjects as a group selected the baited cup when only the empty cup was either shown or shaken, which means that subjects chose correctly without having seen or heard the food (i.e., inference by exclusion). Control tests showed that subjects were not more attracted to noisy cups, avoided shaken noiseless cups, or learned to use auditory information as a cue during the study. It is concluded that subjects understood that the food caused the noise, not simply that the noise was associated with the food.  相似文献   

20.
In this study, we compared the performances on an enumeration task (numerical labeling task) of 1 chimpanzee (Pan troglodytes) and 4 humans. In this task, two types of trials, with different exposure durations of the sample that was to be enumerated, were used. In the unlimited-exposure trials, the sample remained on until the subject made a choice. In the brief-exposure trials, the sample was presented for 100 msec and then was masked. The results show clear differences between the different species. The main differences had to do with accuracy during the unlimited trials and response times during the brief trials. Detailed analyses of the pattern of response times for the chimpanzee and of looking-back behavior during the task suggests that the enumeration process underlying the subject's performance was not counting but estimation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号