首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Exploration is the primary way in which rodents gather information about their spatial surroundings. Thus, spatial theories propose that damage to the hippocampus, a structure thought to play a fundamental role in spatial behavior, should disrupt exploration. Exploration in rats is organized. The animals create home bases that are central to exploratory excursions and returns, and hippocampal formation damage alters the organization of exploration by disrupting returns. Mice do not appear to readily establish home bases in novel environments, thus, for this species, it is more difficult to establish the contribution of the hippocampus to exploration. The purpose of the present study was threefold: develop a task in which mice center their exploration from a home base, determine whether the exploratory behavior is organized, and evaluate the role of fimbria-fornix lesions on exploration. Mice were given a novel exploratory task in which their nesting material was placed on a large circular table. Video records of control and fimbria-fornix mice were made in both light and dark (infrared light) conditions. Exploration patterns (outward trips, stops, and homeward trips) were reconstructed from the video records. Control mice centered their activity on their bedding, from which they made circuitous outward trips marked by many stops, and periodic direct returns. The bedding-centered behavior and outward trips of the fimbria-fornix mice were similar to those of the control mice, but significantly fewer direct return trips occurred. The direct homeward trips observed under light and dark conditions were consistent with a dead-reckoning strategy, in which an animal computes its present position and homeward trajectory from self-movement cues generated on the outward trip. Because the fimbria-fornix lesions disrupted the homeward component of exploratory trips, we conclude that the fimbria-fornix may contribute to dead reckoning in mice. The results also show that the home-bedding methodology facilitates the establishment of a home base by mice, thus providing a useful methodology for studies with mice.  相似文献   

2.
The increasing popularity of marmoset monkeys (Callithrix jacchus) in anatomical, behavioral, and electrophysiological studies has called for a detailed analysis of their natural behavior within limited spaces. In the present study, the authors analyzed hand movements during horizontal and vertical progressions in a cylinder. The trajectory of each hand covered the entire cylinder floor during horizontal progressions and the entire cylinder wall during vertical progressions. Different marmosets have different patterns of hand movement. The average maximum angle of hand movements for all marmosets during horizontal and vertical progressions oscillates, although the average over time is constant and similar for both hands, whereas head movements during horizontal progressions become smaller with successive progressions. Another observed difference between rats and monkeys was in the size of head and hand movements at the beginning of each experimental session. During the 1st horizontal progression, all marmosets moved their heads to a greater extent than their hands. This sequential head and hand movement is referred as bistable behavior. The bistable pattern of motor behavior, which was also observed in successive progressions, may be derived from an inherent fear of predators or exploratory interest of a novel environment.  相似文献   

3.
Most delay discounting studies use tasks that arrange delay progressions in which the spacing between consecutive delays becomes progressively larger. To date, little research has examined delay discounting using other progressions. The present study assessed whether the form or steepness of discounting varied across different delay progressions. Human participants completed three discounting tasks with delay progressions that varied in the time between consecutive delays: a standard (increasing duration between delays), linear (equal duration between delays), and an inverse progression (decreasing duration between delays). Steepness of discounting was generally reduced, and remained so, following experience with the inverse progression. Effects of the delay progression on the best fitting equation were order‐dependent. Overall the hyperbola model provided better fits, but the exponential model performed better with data from the inverse progression. Regardless, differences in which model fit best were often small. The finding that the best fitting model was dependent, in some cases, on the delay progression suggests that a single quantitative model of discounting may not be applicable to describe discounting across all procedural contexts. Ultimately, changes in steepness of discounting following experience with the inverse progression appeared similar to anchoring effects, whose mechanism will require further study to delineate.  相似文献   

4.
Learning of simple numerical progressions and compound progressions formed by combining two or three simple progressions is investigated. In two experiments, time to solution was greater for compound vs simple progressions; greater the higher the progression’s solution level; and greater if the progression consisted of large vs small numbers. A set of strategies is proposed to account for progression learning based on the assumption S computes differences between integers, differences between differences, etc., in a hierarchical fashion. Two measures of progression difficulty, each a summary of the strategies, are proposed; C1 is a count of the number of differences needed to solve a progression; C2 is the same count with higher level differences given more weight. The measures accurately predict in both experiments the mean time to solve 16 different progressions with C2 being somewhat superior. The measures also predict the learning difficulty of 10 other progressions reported by Bjork (1968).  相似文献   

5.
When traveling by car, the driver normally feels that the return trip is shorter than the outbound trip. The reason for this feeling, called return trip effect, is not clear. To explore the internal causes of this return trip effect, an indoor driving simulation experiment and a real car driving experiment were performed in this study. Questionnaires were used to obtain the estimated time of the outbound and return trips of the drivers. An eye tracker and an electroencephalograph equipment were used to record driver's eye movement and EEG data in the real-car driving experiment. The physiological indices and questionnaire results showed that the difference in the driver's cognitive loads of the outbound and return trips was the internal cause of the return trip effect. Drivers who were unfamiliar with the road had a different cognitive load between the two trips, which resulted in the return trip effect. However, drivers who were familiar with the road did not experience a return trip effect due to the close cognitive loads of the two trips.  相似文献   

6.
Due to the redundant degrees of freedom (DOF) and nonlinearity of reactional kinetic elements within the human motor apparatus, controlling the complex dynamics of the human musculoskeletal system presents considerable difficulties. Based on this challenge, Bernstein (1967) viewed skill development as the process whereby the central nervous system (CNS) gains mastery of kinematic DOF and kinetic reactional elements (passive forces, moments etc.), with the highest level of skill characterised by optimal exploitation of reactional elements in the achievement of movement goals. A previous kinematic investigation into coordination differences in a complex multidirectional dance sequence demonstrated that general unfreezing of kinematic DOF occurred as dance skill progressed (Chang et al., submitted for publication). To gain insight into the role of angular reactional elements in skill, the present kinetic study investigated angular momentum and associated variables across three skill levels (beginners, intermediates, experts) within this same complex dance sequence. The results showed that the angular momenta of segments and accompanying angular reactional elements generally increased with skill level. More specifically, the findings suggested that while improvements in movement economy from cancellation of angular momentum between body segments occur early in skill progression, later in skill progression, experts utilise increased whole-body angular momentum. Although this is energetically expensive, it may enhance the aesthetic value of dance movements, and/or have mechanical advantages. Overall, the findings here provide support for Bernstein’s (1967) model of skill development. Future research should quantify the relations between energy expenditure, key biomechanical variables that reflect skill and dance aesthetics as perceived by audiences.  相似文献   

7.
In this study, the handwriting performances of dysgraphic children were compared to those of proficient children and adults. The task consisted in writing a single word at normal and fast speeds. A distinction was made between two kinds of pauses, which are often confounded: pen lifts, when the pen is above the paper, and pen stops, when it is immobile on the paper. The number and duration of lifts and stops were analyzed, together with the mean velocity. No difference in the number of lifts was observed between the three groups of writers, but the lift durations were shorter for adults. While dysgraphic children were able to write as fast as proficient children, their stops were more numerous and longer than those of proficient children who, themselves, made more stops than adults. A distinction was made between short, normal, and long, abnormal, stops. The results of this study suggest that pen stops are more appropriate than pen lifts in differentiating the handwriting fluency of dysgraphic and proficient children.  相似文献   

8.
Human and rat movement organization was investigated as they searched for randomly located rewards without access to visual information. Under dark conditions, rats foraged for randomly located food pellets (Experiment 1). Blindfolded humans were instructed to search for an ostensible hidden coin using a metal detector (Experiment 2). After locating the food pellet, rats carried it back to the refuge, and after a designated searching time, humans were instructed to return to the start location. Although both species exhibited a high degree of similarity in searching path movement organization and ability to return to the start location, disruption of human searching path organization was associated with impairments in returning to the start location. These results support the vestibular "gain" account of movement organization during dead-reckoning-based navigation.  相似文献   

9.
The purpose of this study was to investigate influences of emotional feelings on sit-to-walk (STW). Eighteen healthy young adults performed STW while feeling sadness, anger, joy and neutral emotion. Emotions were elicited using an autobiographical memories task. We used an optoelectronic motion capture system to collect motion data and assessed kinematics of STW. Emotion-related differences in STW kinematics were consistent with differences in movement speed. Compared to neutral emotion, sadness was associated with increased STW duration and phase durations, decreased peak forward and vertical center-of-mass (COM) velocity, increased drop in forward COM velocity, and increased forward and vertical normalized jerk score (NJS). Anger and joy were associated with decreased STW duration and phase durations, increased peak forward and vertical COM velocity, decreased drop in forward COM velocity, and decreased forward and vertical NJS compared to neutral emotion. Findings suggest that emotional feelings affect movement speed, hesitation, and movement smoothness during STW.  相似文献   

10.
Learning progressions have been demarcated by some for science education, or only concerned with levels of sophistication in student thinking as determined by logical analyses of the discipline. We take the stance that learning progressions can be leveraged in mathematics education as a form of curriculum research that advances a linked understanding of students learning over time through careful articulation of a curricular framework and progression, instructional sequence, assessments, and levels of sophistication in student learning. Under this broadened conceptualization, we advance a methodology for developing and validating learning progressions, and advance several design considerations that can guide research concerned with engendering forms of mathematics learning, and curricular and instructional support for that learning. We advance a two-phase methodology of (a) research and development, and (b) testing and revision. Each phase involves iterative cycles of design and experimentation with the aim of developing a validated learning progression. In particular, we gathered empirical data to revise our hypothesized curricular framework and progression and to measure change in students. thinking over time as a means to validate both the effectiveness of our instructional sequence and of the assessments designed to capture learning. We use the context of early algebra to exemplify our approach to learning progressions in mathematics education with a focus on the concept of mathematical equivalence across Grades 3-5. The domain of work on research on learning over time is evolving; our work contributes a broadened role for learning progressions work in mathematics education research and practice.  相似文献   

11.
The effect of concurrent physical and cognitive demands on arm motor control is poorly understood. This exploratory study compared movement kinematics in a repetitive high-precision pipetting task with and without additional concurrent cognitive demands in the form of instructions necessary to locate the correct target tube. Thirty-five healthy female subjects performed a standardized pipetting task, transferring liquid repeatedly from one pick-up tube to different target tubes. In the reference condition, lights indicated the target tube in each movement cycle, while the target tube had to be deciphered from a row and column number on a computer screen in the condition with additional cognitive demands. Kinematics of the dominant arm was assessed using the central tendency and variability of the pipette-tip end-point trajectory and joint kinematics properties of the shoulder and elbow. Movements slowed down (lower velocities and higher area under the movement curves) and trajectory variability increased in the condition with additional cognitive demands, but there were no changes in the kinematics properties such as joint range of motion, times of acceleration and deceleration (as indicated by the time to peak velocity), average angles, or phase relationships between angle and angular velocity of shoulder or elbow movements between the two conditions. Further, there were also no differences in the size or structure of variability of the shoulder and elbow joint angles, suggesting that subjects could maintain the motor repertoire unaltered in the presence of these specific additional cognitive demands. Further studies should address motor control at other levels of concurrent cognitive demands, and with motor tasks that are less automated than the pipetting task used in the present study, so as to gain an increased understanding of the effect of concurrent cognitive demands for other activities of relevance to daily life.  相似文献   

12.
The purpose of the present study was to evaluate the impact of four mood conditions (control, positive, negative, aroused) on movement expressivity during a fitness task. Motion capture data from twenty individuals were recorded as they performed a predefined motion sequence. Moods were elicited using task-specific scenarii to keep a valid context. Movement qualities inspired by Effort-Shape framework (Laban & Ullmann, 1971) were computed (i.e., Impulsiveness, Energy, Directness, Jerkiness and Expansiveness). A reduced number of computed features from each movement quality was selected via Principal Component Analyses. Analyses of variance and Generalized Linear Mixed Models were used to identify movement characteristics discriminating the four mood conditions. The aroused mood condition was strongly associated with increased mean Energy compared to the three other conditions. The positive and negative mood conditions showed more subtle differences interpreted as a result of their moderate activation level. Positive mood was associated with more impulsive movements and negative mood was associated with more tense movements (i.e., reduced variability and increased Jerkiness). Findings evidence the key role of movement qualities in capturing motion signatures of moods and highlight the importance of task context in their interpretations.  相似文献   

13.
First year after the stroke is essential for motor recovery. The main motor control strategy (i.e., faster movement production at the expense of lower movement accuracy and stability, or greater movement accuracy and stability at the expense of slower movement) selected by poststroke patients during a unilateral speed–accuracy task (SAT) remains unclear. We aimed to investigate the poststroke (12 months after stroke) effects on the trade-off between movement speed and accuracy, and intraindividual variability during a motor performance task. Healthy right-handed men (n = 20; age ∼ 66 years) and right-handed men after ischemic stroke during their post rehabilitation period (n = 20; age ∼ 69 years) were asked to perform a simple reaction task, a maximal velocity performance task and a SAT with the right and left hand, and with the right and left leg. In the hand movement trial, reaction time and movement velocity (Vmax) in the SAT were slower and time to Vmax in the SAT was longer in the poststroke group (P < .01). In the leg movement trial, poststroke participants reached a greater Vmax in the SAT than the healthy participants (P < .01). The greatest poststroke effect on intraindividual variability in movements was found for movement path in the SAT, which was significantly greater in the legs than in the hands. Poststroke patients in the first year after stroke mainly selected an impulsive strategy for speed over hand and leg motor control, but at the expense of lower movement accuracy and greater variability in movement.  相似文献   

14.
The perception of linear extent in haptic touch appears to be anisotropic, in that haptically perceived extents can depend on the spatial orientation and location of the object and, thus, on the direction of exploratory motion. Experiments 1 and 2 quantified how the haptic perception of linear extent depended on the type of motion (radial or tangential to the body) when subjects explored different stimulus objects (raised lines or solid blocks) varying in length and in relative spatial location. Relatively narrow, shallow, raised lines were judged to be longer, by magnitude estimation, than solid blocks. Consistent with earlier reports, stimuli explored with radial arm motions were judged to be longer than identical stimuli explored with tangential motions; this difference did not depend consistently on the lateral position of the stimulus object, the direction of movement (toward or away from the body), or the distance of the hand from the body but did depend slightly on the angular position of the shoulder. Experiment 3 showed that the radial-tangential effect could be explained by temporal differences in exploratory movements, implying that the apparent anisotropy is not intrinsic to the structure of haptic space.  相似文献   

15.
The perception of linear extent in haptic touch appears to be anisotropic, in that haptically perceived extents can depend on the spatial orientation and location of the object and, thus, on the direction of exploratory motion. Experiments 1 and 2 quantified how the haptic perception of linear extent depended on the type of motion (radial or tangential to the body) when subjects explored different stimulus objects (raised lines or solid blocks) varying in length and in relative spatial location. Relatively narrow, shallow, raised lines were judged to be longer, by magnitude estimation, than solid blocks. Consistent with earlier reports, stimuli explored with radial arm motions were judged to be longer than identical stimuli explored with tangential motions; this difference did not depend consistently on the lateral position of the stimulus object, the direction of movement (toward or away from the body), or the distance of the hand from the body but did depend slightly on the angular position of the shoulder. Experiment 3 showed that the radial-tangential effect could be explained by temporal differences in exploratory movements, implying that the apparent anisotropy is not intrinsic to the structure of haptic space.  相似文献   

16.
The present paper reports an investigation of patterns of exploratory behavior shown by laboratory-bred Spiny Mice (Acomys cahirinus) when given access to a large, novel arena. The aim was to test hypotheses suggested by our previous work with this species. Previous experiments in which the exploratory behavior of Acomys was compared with that of Mus had suggested that each species had a characteristic pattern of emergence and exploration. The present experiment addressed the question of whether the exploratory patterns of Acomys could be predicted from patterns of emergence as suggested by earlier experiments. Data are presented which indicate that the exploratory behavior of Acomys in a large, novel arena is reasonably predictable. The data presented include measures of the animal's responses to different stimuli within the novel environment, including novel, conspicuous objects, food sources, and the holding cage to which the animal could return. In addition, the patterns of movement through different areas of the environment were recorded in relation to the behavior of the animal when it was first given access to the arena. The data indicate that there are two types of strategy, or patterns, by which Acomys begin to explore a novel environment. The first type consists of a delayed emergence into the arena, followed by brief excursions into the area immediately adjacent to the holding cage, interspersed with longer periods of returns to the holding cage. The second type involves immediate emergence, followed by rapid "dashes" around the periphery of the arena. Which of the two strategies is adopted appears to depend upon the animal's behavior at the time of initial access. Two subsequent experiments considered these strategies further. Experiment 2 indicated that Type I was more characteristic of males and Type II more characteristic of females, although there were no differences related to the female estrous cycle. In Experiment 3, the patterns of exploration over four consecutive tests were investigated. It was found that the strategy adopted by an individual is likely to be consistent across tests.  相似文献   

17.
Coupling of spine and hip joints during full body reaching tasks was investigated in 16 participants (8 male and 8 female) who performed reaching tasks at comfortable and fast-paced movement speeds to three targets located in a para-sagittal plane. The participants paused at target contact for 500ms and then returned to an upright posture. Three-dimensional joint motions of the spine and hip were recorded using an electromagnetic tracking device. We found an effect of movement phase (i.e., reach and return) on the onset timing of the spine and hip joints. For most target locations and movement speeds, spine motion onset preceded hip motion onset during the reaching phase of the movement task. In the reach phase, when averaged across all movement conditions, spine joint motion preceded hip joint motion by an average of 48.9ms. In contrast, in the return phase, hip joint motion preceded spine joint motion by an average of 63.0ms. Additionally, when participants were instructed to use either a knee flexion or knee extension strategy to perform the reaching tasks there was no effect of movement strategy on timing of the spine and hip. There was also no effect of target height on the spine-hip ratio, but as movement speed increased, the spine/hip ratio decreased for all target locations due primarily to an increase in hip joint excursion. The findings indicate clear differences in onset timing of the spine and hip joints during reaching tasks that necessitate some forward bending of the trunk and that onset timing is reversed for the return to an upright posture.  相似文献   

18.
Discrimination of differences between small lumbar flexion movements made when standing may differ depending on whether vision is available. Dependence on general vision during trunk movements may be increased following surgery, in which an intervertebral disc is replaced with a prosthetic disc. This study investigated whether the availability of vision changed discrimination of small differences in lumbar forward flexion movement when standing for patients with lumbar disc replacement and healthy peers. 20 volunteers without a history of back pain and 20 with disc replacement undertook a 100-trial sequence of forward flexion movements to a set of physical stops, making an absolute judgement as to the position after each movement. General (nontarget) vision during the movement was available or removed randomly trial by trial. Availability of vision did not affect discrimination of flexion movements of the lumbar spine either in normal healthy individuals or those with disc replacement.  相似文献   

19.
In this exploratory study, we investigated whether or not people who stutter (PWS) show motor practice and learning changes similar to those of people who do not stutter (PNS). To this end, five PWS and five PNS repeated a set of non-words at two different rates (normal and fast) across three test sessions (T1, T2 on the same day and T3 on a separate day, at least 1 week apart). The results indicated that PWS and PNS may resemble each other on a number of performance variables (such as movement amplitude and duration), but they differ in terms of practice and learning on variables that relate to movement stability and strength of coordination patterns. These findings are interpreted in support of recent claims about speech motor skill limitations in PWS.

Educational objectives: The reader will be able to: (1) define oral articulatory changes associated with motor practice and learning and their measurement; (2) summarize findings from previous studies examining motor practice and learning in PWS; and (3) discuss hypotheses that could account for the present findings that suggest PWS and PNS differ in their speech motor learning abilities.  相似文献   


20.
The role of information in the processes underlying kinematic trajectory-formation was examined by manipulating the relation between effector space (movement of a hand-held stylus on a graphics tablet) and task space (movement of a cursor on a screen where targets were presented) in a precision aiming task with five different levels of task difficulty. Movement patterns were found to evolve as a function of the flow of information in task space, with participants (N = 13) producing more rapid and more fluent movements when the mapping between spaces included the softening-spring characteristics typical of behavioural patterns at higher levels of task difficulty. We conclude that the kinematic changes (movement time and pattern) observed when task difficulty increases result from informational influences. Information affects behavioural dynamics at the level of the parameters without affecting the underlying dynamical structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号