首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In one computational model of hippocampal function, the entorhinal cortical input to CA1 is hypothesized to play a key role in the ability of CA1 to decode CA3 recodings. Here, we develop a modification of this CA1 decoder hypothesis that is applicable to several computational theories of hippocampal function, and then we electrophysiologically investigate one assumption of this new hypothesis. First, using biologically realistic estimates, we calculate that CA3-induced CA1 excitation is too high and that inhibition plausibly plays a role in this CA1 decoder model. Thus motivated, we turn to a physiological demonstration to substantiate the plausibility of the proposed mechanism. Using the rat hippocampal slice, we examine an interlaminar interaction between the distal perforant path input to hippocampal CA1 stratum moleculare and the more proximal Schaffer collateral input to stratum radiatum. Perforant path activation provides sufficient inhibition to block homosynaptic long-term potentiation elicited by a suitably strong stratum radiatum input. For this interlaminar interaction to be most effective, perforant path activation must both precede and follow Schaffer collateral activation. Perforant path-evoked inhibition in CA1 can thus serve as a viable mechanism in the learned decoder theory of hippocampal CA1.  相似文献   

2.
The induction of long-term potentiation (LTP) and long-term depression (LTD) at excitatory synapses in the hippocampus can be strongly modulated by patterns of synaptic stimulation that otherwise have no direct effect on synaptic strength. Likewise, patterns of synaptic stimulation that induce LTP or LTD not only modify synaptic strength but can also induce lasting changes that regulate how synapses will respond to subsequent trains of stimulation. Collectively known as metaplasticity, these activity-dependent processes that regulate LTP and LTD induction allow the recent history of synaptic activity to influence the induction of activity-dependent changes in synaptic strength and may thus have an important role in information storage during memory formation. To explore the cellular and molecular mechanisms underlying metaplasticity, we investigated the role of metaplasticity in the induction of LTP by υ-frequency (5-Hz) synaptic stimulation in the hippocampal CA1 region. Our results show that brief trains of υ-frequency stimulation not only induce LTP but also activate a process that inhibits the induction of additional LTP at potentiated synapses. Unlike other forms of metaplasticity, the inhibition of LTP induction at potentiated synapses does not appear to arise from activity-dependent changes in NMDA receptor function, does not require nitric oxide signaling, and is strongly modulated by β-adrenergic receptor activation. Together with previous findings, our results indicate that mechanistically distinct forms of metaplasticity regulate LTP induction and suggest that one way modulatory transmitters may act to regulate synaptic plasticity is by modulating metaplasticity.  相似文献   

3.
Past studies have proposed a role for the hippocampus in the rapid encoding of context memories. Despite this, there is little data regarding the molecular processes underlying the stable formation of a context representation that occurs in the time window established through such behavioral studies. One task that is useful for investigating the rapid encoding of context is contextual fear conditioning (CFC). Behavioral studies demonstrate that animals require approximately 30 s of exploration prior to a footshock to form a contextual representation supporting CFC. Thus, any potential molecular process required for the stabilization of the cellular representation for context must be activated within this narrow and behaviorally defined time window. Detection of the immediate-early gene Arc presents an ideal method to assess the activation of specific neuronal ensembles, given past studies showing the context specific expression of Arc in CA3 and CA1 subfields and the role of Arc in hippocampal long-term synaptic plasticity. Therefore, we examined the temporal dynamics of Arc induction within the hippocampus after brief context exposure to determine whether experience-dependent Arc expression could be involved in the rapid encoding of incidental context memories. We found that the duration of context exposure differentially activated Arc expression in hippocampal subfields, with CA3 showing rapid engagement within as little as 3 s of exposure. By contrast, Arc induction in CA1 required 30 s of context exposure to reach maximal levels. A parallel behavioral experiment revealed that 30 s, but not 3 s, exposure to a context resulted in strong conditioned freezing 24 h later, consistent with past studies from other laboratories. The current study is the first to examine the rapid temporal dynamics of Arc induction in hippocampus in a well-defined context memory paradigm. These studies demonstrate within 30 s of context exposure Arc is fully activated in CA3 and CA1, suggesting that the engagement of plastic processes requiring Arc function (such as long-term potentiation) occurs within the same temporal domain as that required for behavioral conditioning.  相似文献   

4.
The current study employed aged and young male Fischer 344 rats to examine the relationship between long-term depression (LTD), age, and memory. Memory performance was measured on two tasks that are sensitive to hippocampal function; inhibitory avoidance and spatial discrimination on the Morris water maze. The slope of the extracellular excitatory postsynaptic field potential was recorded from CA3-CA1 synapses in hippocampal slices. Low frequency stimulation (LFS) induced a modest LTD only in aged animals under standard recording conditions. The decrease in synaptic transmission examined only in aged animals correlated with memory scores on the spatial task and LTD was not observed in aged animals with the highest memory scores. LTD induction was facilitated by increasing the Ca(2+)/Mg(2+) ratio of the recording medium or employing a paired-pulse stimulation paradigm. Age differences disappeared when LFS was delivered under conditions of elevated Ca(2+)/Mg(2+) in the recording medium. Using multiple induction episodes under conditions which facilitate LTD-induction, no age-related difference was observed in the maximum level of LTD. The results indicate that the increased susceptibility to LTD induction is associated with impaired memory and results from a shift in the induction process. The possible relationship between LTD and memory function is discussed.  相似文献   

5.
Endogenous cyclical changes in the levels of estrogen can have marked effects on hippocampal synaptic plasticity. In two experiments, we examined the effect of chronic estrogen loss and replacement following ovariectomy on the induction of bidirectional changes in synaptic plasticity in the CA1 region in vivo. In Experiment 1, ovariectomy carried out either 5 days or 5 weeks before testing impaired the induction of long-term depression (LTD) and but not long-term potentiation (LTP). In Experiment 2, chronic estrogen replacement (0.2 ml of 10 microg injection of 17beta-estradiol every 48 h) over the course of 5 weeks enhanced the magnitude of paired-pulse-induced LTD in the CA1 region but had no effect on the induction of LTP. The results demonstrate that acute and chronic estrogen deprivation disrupted dynamic synaptic plasticity processes in the hippocampal CA1 region and that this disruption was ameliorated by chronic estrogen replacement. The findings are discussed with reference to: (1) the contribution of Ca(2+) regulated synaptic signalling pathways in the CA1 region to estradiol modulation of LTP and LTD and (2) the potential functional significance of ovariectomy-induced changes in synaptic plasticity for learning and memory processes.  相似文献   

6.
The effectiveness of tetraethylammonium (TEA) and high-frequency stimulation (HFS) in inducing long-term synaptic modification is compared in CA1 and dentate gyrus (DG) in vitro. High-frequency stimulation induces long-term potentiation (LTP) at synapses of both perforant path-DG granule cell and Schaffer collateral-CA1 pyramidal cell pathways. By contrast, TEA (25 mM) induces long-term depression in DG while inducing LTP in CA1. The mechanisms underlying the differential effect of TEA in CA1 and DG were investigated. It was observed that T-type voltage-dependent calcium channel (VDCC) blocker, Ni2+ (50 microM), partially blocked TEA-induced LTP in CA1. A complete blockade of the TEA-induced LTP occurred when Ni2+ was applied together with the NMDA receptor antagonist, D-APV. The L-type VDCC blocker, nifidipine (20 microM), had no effect on CA1 TEA-induced LTP. In DG of the same slice, TEA actually induced long-term depression (LTD) instead of LTP, an effect that was blocked by D-APV. Neither T-type nor L-type VDCC blockade could prevent this LTD. When the calcium concentration in the perfusion medium was increased, TEA induced a weak LTP in DG that was blocked by Ni2+. During exposure to TEA, the magnitude of field EPSPs was increased in both CA1 and DG, but the increase was substantially greater in CA1. Tetraethylammonium application also was associated with a large, late EPSP component in CA1 that persisted even after severing the connections between CA3 and CA1. All of the TEA effects in CA1, however, were dramatically reduced by Ni2+. The results of this study indicate that TEA indirectly acts via both T-type VDCCs and NMDA receptors in CA1 and, as a consequence, induces LTP. By contrast, TEA indirectly acts via only NMDA receptors in DG and results in LTD. The results raise the possibility of a major synaptic difference in the density and/or distribution of T-type VDCCs and NMDA receptors in CA1 and DG of the rat hippocampus.  相似文献   

7.
Withdrawal reflexes of Aplysia are mediated in part by a monosynaptic circuit of sensory (SN) and motor (MN) neurons. A brief high-frequency burst of spikes in the SN produces excitatory postsynaptic potentials (EPSPs) that rapidly decrease in amplitude during the burst of activity. It is generally believed that this and other (i.e., low-frequency) forms of homosynaptic depression are entirely caused by presynaptic mechanisms (e.g., depletion of releasable transmitter). The present study examines the contribution that desensitization of postsynaptic glutamate receptors makes to homosynaptic depression. Bath application of cyclothiazide, an agent that reduces desensitization of non-NMDA glutamate receptors, reduced high-, but not low-frequency synaptic depression. Thus, a postsynaptic mechanism, desensitization of glutamate receptors, can also contribute to homosynaptic depression of sensorimotor synapses.  相似文献   

8.
Temporal lobe epilepsy (TLE) is often accompanied by interictal behavioral abnormalities, such as fear and memory impairment. To identify possible underlying substrates, we analyzed long-term synaptic plasticity in two relevant brain regions, the lateral amygdala (LA) and the CA1 region of the hippocampus, in the kindling model of epilepsy. Wistar rats were kindled through daily administration of brief electrical stimulations to the left basolateral nucleus of the amygdala. Field potential recordings were performed in slices obtained from kindled rats 48 h after the last induced seizure, and in slices from sham-implanted and nonimplanted controls. Kindling resulted in a significant impairment of long-term potentiation (LTP) in both the LA and the CA1, the magnitude of which was dependent on the number of prior stage V seizures. Saturation of CA1-LTP, assessed through repeated spaced delivery of high-frequency stimulation, occurred at lower levels in kindled compared to sham-implanted animals, consistent with the hypothesis of reduced capacity of further synaptic strengthening. Furthermore, theta pulse stimulation elicited long-term depression in the amygdala in nonimplanted and sham-implanted controls, whereas the same stimulation protocol stimulation caused LTP in kindled rats. In conclusion, kindling differentially affects the magnitude, saturation, and polarity of LTP in the CA1 and LA, respectively, most likely indicating an activity-dependent mechanism in the context of synaptic metaplasticity.  相似文献   

9.
We have previously shown that the extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/ MAPK) is transiently activated in anatomically restricted regions of the lateral amygdala (LA) following Pavlovian fear conditioning and that blockade of ERK/MAPK activation in the LA impairs both fear memory consolidation and long-term potentiation (LTP) in the amygdala, in vitro. The present experiments evaluated the role of the ERK/MAPK signaling cascade in LTP at thalamo-LA input synapses, in vivo. We first show that ERK/MAPK is transiently activated/phosphorylated in the LA at 5 min, but not 15 or 60 min, after high-frequency, but not low-frequency, stimulation of the auditory thalamus. ERK activation induced by LTP-inducing stimulation was anatomically restricted to the same regions of the LA previously shown to exhibit ERK regulation following fear conditioning. We next show that intra-LA infusion of U0126, an inhibitor of ERK/MAPK activation, impairs LTP at thalamo-LA input synapses. Collectively, results demonstrate that ERK/MAPK activation is necessary for synaptic plasticity in anatomically defined regions of the LA, in vivo.  相似文献   

10.
The effectiveness of tetraethylammonium (TEA) and high-frequency stimulation (HFS) in inducing long-term synaptic modification is compared in CA1 and dentate gyrus (DG) in vitro. High-frequency stimulation induces long-term potentiation (LTP) at synapses of both perforant path-DG granule cell and Schaffer collateral-CA1 pyramidal cell pathways. By contrast, TEA (25 mM) induces long-term depression in DG while inducing LTP in CA1. The mechanisms underlying the differential effect of TEA in CA1 and DG were investigated. It was observed that T-type voltage-dependent calcium channel (VDCC) blocker, Ni2+ (50 μM), partially blocked TEA-induced LTP in CA1. A complete blockade of the TEA-induced LTP occurred when Ni2+ was applied together with the NMDA receptor antagonist, D-APV. The L-type VDCC blocker, nifidipine (20 μM), had no effect on CA1 TEA-induced LTP. In DG of the same slice, TEA actually induced long-term depression (LTD) instead of LTP, an effect that was blocked by D-APV. Neither T-type nor L-type VDCC blockade could prevent this LTD. When the calcium concentration in the perfusion medium was increased, TEA induced a weak LTP in DG that was blocked by Ni2+. During exposure to TEA, the magnitude of field EPSPs was increased in both CA1 and DG, but the increase was substantially greater in CA1. Tetraethylammonium application also was associated with a large, late EPSP component in CA1 that persisted even after severing the connections between CA3 and CA1. All of the TEA effects in CA1, however, were dramatically reduced by Ni2+. The results of this study indicate that TEA indirectly acts via both T-type VDCCs and NMDA receptors in CA1 and, as a consequence, induces LTP. By contrast, TEA indirectly acts via only NMDA receptors in DG and results in LTD. The results raise the possibility of a major synaptic difference in the density and/or distribution of T-type VDCCs and NMDA receptors in CA1 and DG of the rat hippocampus.  相似文献   

11.
Brain-derived neurotrophic factor (BDNF) is a potent modulator of synaptic transmission and plasticity in the CNS, acting both pre- and postsynaptically. We demonstrated recently that BDNF/TrkB signaling increases dendritic spine density in hippocampal CA1 pyramidal neurons. Here, we tested whether activation of the prominent ERK (MAPK) signaling pathway was responsible for BDNF's effects on spine growth. Slice cultures were transfected with enhanced yellow fluorescent protein (eYFP) by particle-mediated gene transfer, and CA1 pyramidal neurons were imaged by laser-scanning confocal microscopy. We confirmed that BDNF (24 h) increases spine density in apical dendrites of CA1 neurons. The MEK (ERK kinase) inhibitors PD98059 and U0126 completely prevented the increase in spine density induced by BDNF, without having an effect on spine density by themselves. In contrast to its actions on cortical pyramidal neurons, BDNF had minor and rather localized effects on dendritic complexity in hippocampal pyramidal neurons, increasing the total length, but not the branching of apical dendrites within CA1 stratum radiatum, without affecting basal dendrites in stratum oriens. Our results support the hypothesis that the ERK-signaling pathway not only mediates long-term synaptic plasticity and hippocampal-dependent learning, but it is also involved in the structural remodeling of excitatory spine synapses triggered by neurotrophins.  相似文献   

12.
Pavlovian eyeblink conditioning has been used extensively as a model system for examining the neural mechanisms underlying associative learning. Delay eyeblink conditioning depends on the intermediate cerebellum ipsilateral to the conditioned eye. Evidence favors a two-site plasticity model within the cerebellum with long-term depression of parallel fiber synapses on Purkinje cells and long-term potentiation of mossy fiber synapses on neurons in the anterior interpositus nucleus. Conditioned stimulus and unconditioned stimulus inputs arise from the pontine nuclei and inferior olive, respectively, converging in the cerebellar cortex and deep nuclei. Projections from subcortical sensory nuclei to the pontine nuclei that are necessary for eyeblink conditioning are beginning to be identified, and recent studies indicate that there are dynamic interactions between sensory thalamic nuclei and the cerebellum during eyeblink conditioning. Cerebellar output is projected to the magnocellular red nucleus and then to the motor nuclei that generate the blink response(s). Tremendous progress has been made toward determining the neural mechanisms of delay eyeblink conditioning but there are still significant gaps in our understanding of the necessary neural circuitry and plasticity mechanisms underlying cerebellar learning.  相似文献   

13.
The marine snail, Aplysia californica, is a valuable model system for cell biological studies of learning and memory. Aplysia exhibits a reflexive withdrawal of its gill and siphon in response to weak or moderate tactile stimulation of its skin. Repeated tactile stimulation causes this defensive withdrawal reflex to habituate. Both short-term habituation, lasting <30 min, and long-term habituation, which can last >24 h, have been reported in Aplysia. Habituation of the withdrawal reflex correlates with, and is in part due to, depression of transmission at the monosynaptic connection between mechanoreceptive sensory neurons and motor neurons within the abdominal ganglion. Habituation-related short-term depression of the sensorimotor synapse appears to be due exclusively to presynaptic changes. However, changes within the sensory neuron, by themselves, do not account for more persistent depression of the sensorimotor synapse. Recent behavioral work suggests that long-term habituation in Aplysia critically involves postsynaptic processes, specifically, activation of AMPA- and NMDA-type receptors. In addition, long-term habituation requires activity of protein phosphatases, including protein phosphatases 1, 2A, and 2B, as well as activity of voltage-dependent Ca2+ channels. Cellular work has succeeded in demonstrating long-term, homosynaptic depression (LTD) of the sensorimotor synapse in dissociated cell culture and, more recently, LTD of the glutamate response of isolated motor neurons in culture (“hemisynaptic” LTD). These in vitro forms of LTD have mechanistic parallels to long-term habituation. In particular, homosynaptic LTD of the sensorimotor synapse requires elevated intracellular Ca2+ within the motor neuron, and hemisynaptic LTD requires activity of AMPA- and NMDA-type receptors. In addition, activation of group I and II metabotropic glutamate receptors (mGluRs) can induce hemisynaptic LTD. The demonstration of LTD in vitro opens up a promising new avenue for attempts to relate long-term habituation to cellular changes within the nervous system of Aplysia.  相似文献   

14.
Aplysia motoneurons cocultured with a presynaptic sensory neuron exhibit homosynaptic depression when stimulated at low frequencies. A single bath application of serotonin (5HT) leads within seconds to facilitation of the depressed synapse. The facilitation is attributed to mobilization of neurotransmitter-containing vesicles from a feeding vesicle store to the depleted, readily releasable pool by protein kinase C (PKC). Here, we demonstrate that the calpain inhibitors, calpeptin, MG132, and ALLN, but not the proteasome inhibitors, lactacystin and clasto-lactacystin beta-lactone, block 5HT-induced facilitation of depressed synapses. Likewise the 5HT-induced enhancement of spontaneous miniature potentials (mEPSPs) frequency of depressed synapses is significantly reduced by calpeptin. In contrast, neither the facilitation of nondepressed synapses nor the enhancement of their mEPSPs frequency is affected by the inhibitor. The data suggest that action potentials-induced calcium influx activate calpains. These, in turn, play a role in the refilling processes of the depleted, releasable vesicle store.  相似文献   

15.
Long-term potentiation (LTP) and depression (LTD) are considered as cellular models for learning and memory. We studied the impact of holeboard training on LTP in the rat CA1 hippocampal region. In 7-week-old Wistar rats a recording electrode was chronically implanted into the hippocampal pyramidal cell layer of the CA1 of the right hemisphere and a stimulation electrode into the contralateral CA3 region.Two groups of animals received a spatial holeboard training of 10 or 15 trials over 2 days on a fixed pattern of baited holes. The last trial was performed 15 min after a primed burst stimulation of the contralateral CA3, which resulted in LTP in the ipsilateral CA1. A pseudo-trained group that received a 10 trial training with changing patterns of baited holes after each trial and a group that remained in the recording chambers during the experiments served as controls. Experimental rats significantly improved their spatial performance with increasing numbers of trials, indicated by decreasing times to pick up all food pellets and by decreasing numbers of reference memory errors. A learning-related impairment of CA1-LTP measured in both the population-spike amplitude as well as the fEPSP could be noted. These results show that specific (pattern-training), but not unspecific (pseudo-training) spatial information processing prior to electrical stimulation can severely affect LTP in hippocampal area CA1.  相似文献   

16.
分辨学习中大鼠PP-CA_3突触效应有习得性LTP产生,进一步观察到MF-CA_3及Comm-CA_3也同步地产生习得性LTP,表明几种输入突触都产生习得性LTP,而MF-CA_3突触效应增强的程度则较Comm-CA_3的为大(P<0.01)。海马CA_3注入印防己毒素能易化PP-CA_3突触习得性LTP的产生,工作发现一侧海马CA_3注印防己毒素,易化对侧MF-CA_3突触习得性LTP的产生,表明两侧海马CA_3区在其习得性LTP的形成上是相互协同的。  相似文献   

17.
18.
The dopaminergic modulation of long-term potentiation (LTP) has been studied well, but the mechanism by which dopamine induces LTP (DA-LTP) in CA1 pyramidal neurons is unknown. Here, we report that DA-LTP in basal dendrites is dependent while in apical dendrites it is independent of activation of L-type voltage-gated calcium channels (VDCC). Activation via NMDAR is critical for the induction of DA-LTP in both apical and basal dendrites, but only BDNF is required for the induction and maintenance of DA-LTP in apical dendrites. We report that dopaminergic modulation of LTP is lamina-specific at the Schaffer collateral/commissural synapses in the CA1 region.  相似文献   

19.
The medial and lateral perforant path projections to the hippocampal CA3 region display distinct mechanisms of long-term potentiation (LTP) induction, N-methyl-d-aspartate (NMDA) and opioid receptor dependent, respectively. However, medial and lateral perforant path projections to the CA3 region display associative LTP with coactivation, suggesting that while they differ in receptors involved in LTP induction they may share common downstream mechanisms of LTP induction. Here we address this interaction of LTP induction mechanisms by evaluating the contribution of opioid receptors to the induction of associative LTP among the medial and lateral perforant path projections to the CA3 region in vivo. Local application of the opioid receptor antagonists naloxone or Cys2-Tyr3-Orn5-Pen7-amide (CTOP) normally block induction of lateral perforant path-CA3 LTP. However, these opioid receptor antagonists failed to block associative LTP in lateral perforant path-CA3 synapses when it was induced by strong coactivation of the medial perforant pathway which displays NMDAR-dependent LTP. Thus strong activation of non-opioidergic afferents can substitute for the opioid receptor activation required for lateral perforant path LTP induction. Conversely, medial perforant path-CA3 associative LTP was blocked by opioid receptor antagonists when induced by strong coactivation of the opioidergic lateral perforant path. These data indicate endogenous opioid peptides contribute to associative LTP at coactive synapses when induced by strong coactivation of an opioidergic afferent system. These data further suggest that associative LTP induction is regulated by the receptor mechanisms of the strongly stimulated pathway. Thus, while medial and lateral perforant path synapses differ in their mechanisms of LTP induction, associative LTP at these synapses share common downstream mechanisms of induction.  相似文献   

20.
Silencing of a single gene, FMR1, is linked to a highly prevalent form of mental retardation, characterized by social and cognitive impairments, known as fragile X syndrome (FXS). The FMR1 gene encodes fragile X mental retardation protein (FMRP), which negatively regulates translation. Knockout of Fmr1 in mice results in enhanced long-term depression (LTD) induced by metabotropic glutamate receptor (mGluR) activation. Despite the evidence implicating FMRP in LTD, the role of FMRP in long-term potentiation (LTP) is less clear. Synaptic strength can be augmented heterosynaptically through the generation and sequestration of plasticity-related proteins, in a cell-wide manner. If heterosynaptic plasticity is altered in Fmr1 knockout (KO) mice, this may explain the cognitive deficits associated with FXS. We induced homosynaptic plasticity using the β-adrenergic receptor (β-AR) agonist, isoproterenol (ISO), which facilitated heterosynaptic LTP that was enhanced in Fmr1 KO mice relative to wild-type (WT) controls. To determine if enhanced heterosynaptic LTP in Fmr1 KO mouse hippocampus requires protein synthesis, we applied a translation inhibitor, emetine (EME). EME blocked homo- and heterosynaptic LTP in both genotypes. We also probed the roles of mTOR and ERK in boosting heterosynaptic LTP in Fmr1 KO mice. Although heterosynaptic LTP was blocked in both WT and KOs by inhibitors of mTOR and ERK, homosynaptic LTP was still enhanced following mTOR inhibition in slices from Fmr1 KO mice. Because mTOR will normally stimulate translation initiation, our results suggest that β-AR stimulation paired with derepression of translation results in enhanced heterosynaptic plasticity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号