首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The posterior parietal cortex has been traditionally associated with coordinate transformations necessary for interaction with the environment and with visual-spatial attention. More recently, involvement of posterior parietal cortex in other cognitive functions such as working memory and task learning has become evident. Neurophysiological experiments in non-human primates and human imaging studies have revealed neural correlates of memory and learning at the single neuron and at the brain network level. During working memory, posterior parietal neurons continue to discharge and to represent stimuli that are no longer present. This activation resembles the responses of prefrontal neurons, although important differences have been identified in terms of the ability to resist stimulation by distracting stimuli, which is more evident in the prefrontal than the posterior parietal cortex. Posterior parietal neurons also become active during tasks that require the organization of information into larger structured elements and their activity is modulated according to learned context-dependent rules. Neural correlates of learning can be observed in the mean discharge rate and spectral power of neuronal spike trains after training to perform new task sets or rules. These findings demonstrate the importance of posterior parietal cortex in brain networks mediating working memory and learning.  相似文献   

2.
A short-term source monitoring procedure with functional magnetic resonance imaging assessed neural activity when participants made judgments about the format of 1 of 4 studied items (picture, word), the encoding task performed (cost, place), or whether an item was old or new. The results support findings from long-term memory studies showing that left anterior ventrolateral prefrontal cortex (PFC) is engaged when people make source attributions about reflectively generated information (cognitive operations, conceptual features). The findings also point to a role for right lateral PFC in attention to perceptual features and/or familiarity in making source decisions. Activity in posterior regions also differed depending on what was evaluated. These results provide neuroimaging evidence for theoretical approaches emphasizing that agendas influence which features are monitored during remembering (e.g., M. K. Johnson, S. Hashtroudi, & D. S. Lindsay, 1993). They also support the hypothesis that some of the activity in left lateral PFC and posterior regions associated with remembering specific information is not unique to long-term memory but rather is associated with agenda-driven source monitoring processes common to working memory and long-term memory.  相似文献   

3.
The ability to keep information active in working memory is one of the cornerstones of cognitive development. Prior studies have demonstrated that regions which are important for working memory performance in adults, such as dorsolateral prefrontal cortex (DLPFC), ventrolateral prefrontal cortex (VLPFC), and superior parietal cortex, become increasingly engaged across school-aged development. The primary goal of the present functional MRI study was to investigate the involvement of these regions in the development of working memory manipulation relative to maintenance functions under different loads. We measured activation in DLPFC, VLPFC, and superior parietal cortex during the delay period of a verbal working memory task in 11-13-year-old children and young adults. We found evidence for age-related behavioral improvements in working memory and functional changes within DLPFC and VLPFC activation patterns. Although activation profiles of DLPFC and VLPFC were similar, group differences were most pronounced for right DLPFC. Consistent with prior studies, right DLPFC showed an interaction between age and condition (i.e. manipulation versus maintenance), specifically at the lower loads. This interaction was characterized by increased activation for manipulation relative to maintenance trials in adults compared to children. In contrast, we did not observe a significant age-dependent load sensitivity. These results suggest that age-related differences in the right DLPFC are specific to working memory manipulation and are not related to task difficulty and/or differences in short-term memory capacity.  相似文献   

4.
过滤效能反映了视觉工作记忆的干扰抑制功能, 研究者可基于储存容量或表征精度对其进行测量, 其神经加工过程主要分为觉察分心项目、过滤启动、实现过滤或储存, 涉及前额叶皮层和基底核、后顶叶皮层的协同作用。过滤效能的变化方向受到年龄、特殊障碍、情绪、认知特点等因素的影响。未来研究仍需解决的问题包括厘清过滤效能与工作记忆容量的关系, 辨明过滤效能的心理实现过程, 探索不同年龄、特殊障碍和职业等群体过滤效能的脑机制以及提升基础研究范式的生态学效度。  相似文献   

5.
客体与空间工作记忆的分离:来自皮层慢电位的证据   总被引:2,自引:0,他引:2  
沃建中  罗良  林崇德  吕勇 《心理学报》2005,37(6):729-738
利用128导事件相关电位技术,采用延迟匹配任务的实验范式,测查了16名正常被试在完成客体任务和空间任务时的皮层慢电位(slow cortical potentials,简称sp成分),实验发现:在后部脑区,客体工作记忆与空间工作记忆在慢波活动的时间上存在分离,空间任务更早的诱发出负sp成分,并且空间任务激活更多的后部脑区;左下前额叶在客体工作记忆任务与空间工作记忆任务中都有激活,并且激活强度不存在显著差异;背侧前额叶主要负责客体信息的保持与复述,但左右背侧前额叶的激活强度存在不对称性。  相似文献   

6.
Working memory has long been associated with the prefrontal cortex, since damage to this brain area can critically impair the ability to maintain and update mnemonic information. Anatomical and physiological evidence suggests, however, that the prefrontal cortex is part of a broader network of interconnected brain areas involved in working memory. These include the parietal and temporal association areas of the cerebral cortex, cingulate and limbic areas, and subcortical structures such as the mediodorsal thalamus and the basal ganglia. Neurophysiological studies in primates confirm the involvement of areas beyond the frontal lobe and illustrate that working memory involves parallel, distributed neuronal networks. In this article, we review the current understanding of the anatomical organization of networks mediating working memory and the neural correlates of memory manifested in each of their nodes. The neural mechanisms of memory maintenance and the integrative role of the prefrontal cortex are also discussed.  相似文献   

7.
How does the brain carry out working memory storage, categorization, and voluntary performance of event sequences? The LIST PARSE neural model proposes an answer that unifies the explanation of cognitive, neurophysiological, and anatomical data. It quantitatively simulates human cognitive data about immediate serial recall and free recall, and monkey neurophysiological data from the prefrontal cortex obtained during sequential sensory-motor imitation and planned performance. The model clarifies why spatial and non-spatial working memories share the same type of circuit design. It proposes how laminar circuits of lateral prefrontal cortex carry out working memory storage of event sequences within layers 6 and 4, how these event sequences are unitized through learning into list chunks within layer 2/3, and how these stored sequences can be recalled at variable rates that are under volitional control by the basal ganglia. These laminar prefrontal circuits are variations of visual cortical circuits that explained data about how the brain sees. These examples from visual and prefrontal cortex illustrate how laminar neocortex can represent both spatial and temporal information, and open the way towards understanding how other behaviors derive from shared laminar neocortical designs.  相似文献   

8.
人类工作记忆的某些神经影像研究   总被引:14,自引:0,他引:14  
刘昌 《心理学报》2002,34(6):82-90
采用神经影像技术研究人类工作记忆的脑机理是目前一个十分活跃的研究领域。研究表明存在负责不同信息加工的工作记忆系统 ,如词语工作记忆、空间工作记忆等 ,其中词语工作记忆主要由大脑左半球参与 ,空间工作记忆主要由大脑右半球参与。前额叶在工作记忆中的作用相当复杂 ,包括对记忆信息的注意和抑制、管理、整合等功能。合理巧妙的实验设计、多种研究手段的综合应用必将使人类工作记忆的脑机理得到充分阐明。  相似文献   

9.
Prefrontal cortex provides both inhibitory and excitatory input to distributed neural circuits required to support performance in diverse tasks. Neurological patients with prefrontal damage are impaired in their ability to inhibit task-irrelevant information during behavioral tasks requiring performance over a delay. The observed enhancements of primary auditory and somatosensory cortical responses to task-irrelevant distractors suggest that prefrontal damage disrupts inhibitory modulation of inputs to primary sensory cortex, perhaps through abnormalities in a prefrontal-thalamic sensory gating system. Failure to suppress irrelevant sensory information results in increased neural noise, contributing to the deficits in decision making routinely observed in these patients. In addition to a critical role in inhibitory control of sensory flow to primary cortical regions, and tertiary prefrontal cortex also exerts excitatory input to activity in multiple sub-regions of secondary association cortex. Unilateral prefrontal damage results in multi-modal decreases in neural activity in posterior association cortex in the hemisphere ipsilateral to damage. This excitatory modulation is necessary to sustain neural activity during working memory. Thus, prefrontal cortex is able to sculpt behavior through parallel inhibitory and excitatory regulation of neural activity in distributed neural networks.  相似文献   

10.
The prefrontal cortex (PFC) is known to actively hold information "online" for a period of seconds in working memory for guiding goal-directed behavior. It has been proposed that relevant information is stored in other brain regions, which is retrieved and held in working memory for subsequent assimilation by the PFC in order to guide behavior. It is uncertain whether PFC stores information outside the temporal limits of working memory. Here, we demonstrate that although enhanced cAMP-dependent protein kinase A (PKA) activity in the PFC is detrimental to working memory, it is required for performance in tasks involving conflicting representations when memory storage is needed for minutes. This study indicates that distinct molecular mechanisms within the PFC underlie information storage for seconds (working memory) and for minutes (short-term memory). In addition, our results demonstrate that short-term memory storage within the prefrontal cortex is required for guiding behavior in tasks with conflicts and provides a plausible mechanism by which the prefrontal cortex executes cognitive control.  相似文献   

11.
工作记忆可以同时保存多个信息并且容量有限, 这一内在机制是工作记忆研究的重点问题。视觉和言语等研究领域都发现工作记忆能够存储多个信息单元, 但对振动触觉工作记忆是否能存储多个频率信息目前尚无相关研究。由于振动触觉频率刺激和视觉刺激具有不同的神经编码机制, 以及振动频率信息是通过躯体感觉产生的模拟的、单维的、参数化信息, 振动触觉工作记忆容量及其加工存储机制的研究也必不可少。首先, 本项目将采用新的实验范式, 探究不同的刺激呈现方式以及不同反应报告方式下, 振动触觉工作记忆的容量及其认知机制。其次, 本项目也将同时运用功能磁共振成像(fMRI)技术, 来阐述振动触觉工作记忆加工存储的神经机制。探究基于触觉频率信息的参数工作记忆容量及其神经机制是完善工作记忆模型的重要补充, 将有助于提高我们对工作记忆系统的理解, 并为视觉、听觉、触觉多模态感知觉信息的跨通道研究奠定基础。  相似文献   

12.
The dorsolateral prefrontal cortex (DLPFC) has been known to play an important role in working memory. Neurophysiological studies have revealed that delay period activity observed in the DLPFC is a neural correlate of the temporary storage mechanism for information and that this activity represents either retrospective or prospective information, although the majority represents retrospective information. However, the DLPFC is not the only brain area related to working memory. The analysis of neural activity in the thalamic mediodorsal (MD) nucleus reveals that the MD also participates in working memory. Although similar task-related activities were observed in the MD, the directional bias of these activities and the proportion of presaccadic activity are different between the MD and the DLPFC. These results indicate that, although the MD participates in working memory, the way it participates in this process is different between these two areas, in that the MD participates more in motor control aspects than the DLPFC does.  相似文献   

13.
The mid-ventrolateral prefrontal cortex and active mnemonic retrieval   总被引:8,自引:0,他引:8  
The role of the mid-ventrolateral prefrontal cortex in memory retrieval is examined and compared with the role of the mid-dorsolateral prefrontal cortex in the monitoring of information in memory. It has been argued that the mid-ventrolateral prefrontal cortex (areas 47/12 and 45) is involved in the active retrieval of information from posterior cortical association areas. Active retrieval is required when stimuli in memory do not bear stable relations to each other and therefore retrieval cannot be automatically driven by strong, stable, and unambiguous stimulus or context relations. Data from functional activation studies with normal human subjects are presented that have demonstrated specific changes in activity within the mid-ventrolateral region of the frontal cortex in relation to the active retrieval of information from memory. By contrast, increases in activity in the mid-dorsolateral region of the frontal cortex occur when the performance of the tasks requires monitoring of information in memory.  相似文献   

14.
The capability to remember and execute intentions in the future – termed prospective memory (PM) – may be of special significance for older adults to enable successful completion of important activities of daily living. Despite the importance of this cognitive function, mixed findings have been obtained regarding age-related decline in PM, and, currently, there is limited understanding of potential contributing mechanisms. In the current study, older (N=41) and younger adults (N=47) underwent task-functional MRI during performance of PM conditions that encouraged either spontaneous retrieval (Focal) or sustained attentional monitoring (Non-focal) to detect PM targets. Older adults exhibited a reduction in PM-related sustained activity within the anterior prefrontal cortex (aPFC) and associated dorsal frontoparietal cognitive control network, due to an increase in non-specific sustained activation in (no-PM) control blocks (i.e., an age-related compensatory shift). Transient PM-trial specific activity was observed in both age groups within a ventral parietal memory network that included the precuneus. However, within a left posterior inferior parietal node of this network, transient PM-related activity was selectively reduced in older adults during the non-focal condition. These age differences in sustained and transient brain activity statistically mediated age-related declines in PM performance, and were potentially linked via age-related changes in functional connectivity between the aPFC and precuneus. Together, they support an account consistent with the Dual Mechanisms of Control framework, in which age-related PM declines are due to neural mechanisms that support proactive cognitive control processes, such as sustained attentional monitoring, while leaving reactive control mechanisms relatively spared.  相似文献   

15.
This study tested the hypothesis that dorsolateral prefrontal cortex deficits contribute to both working memory and long-term memory disturbances in schizophrenia. It also examined whether such deficits were more severe for verbal than nonverbal stimuli. Functional magnetic resonance imaging was used to assess cortical activation during performance of verbal and nonverbal versions of a working memory task and both encoding and recognition tasks in 38 individuals with schizophrenia and 48 healthy controls. Performance of both working memory and long-term memory tasks revealed disturbed dorsolateral prefrontal cortex activation in schizophrenia, although medial temporal deficits were also present. Some evidence was found for more severe cognitive and functional deficits with verbal than nonverbal stimuli, although these results were mixed.  相似文献   

16.
Several recent studies of aging and cognition have attributed decreases in the efficiency of working memory processes to possible declines in attentional control, the mechanism(s) by which the brain attempts to limit its processing to that of task-relevant information. Here we used fMRI measures of neural activity during performance of the color-word Stroop task to compare the neural substrates of attentional control in younger (ages: 21-27 years old) and older participants (ages: 60-75 years old) during conditions of both increased competition (incongruent and congruent neutral) and increased conflict (incongruent and congruent neutral). We found evidence of age-related decreases in the responsiveness of structures thought to support attentional control (e.g., dorsolateral prefrontal and parietal cortices), suggesting possible impairments in the implementation of attentional control in older participants. Consistent with this notion, older participants exhibited more extensive activation of ventral visual processing regions (i.e., temporal cortex) and anterior inferior prefrontal cortices, reflecting a decreased ability to inhibit the processing of task-irrelevant information. Also, the anterior cingulate cortex, a region involved in evaluatory processes at the level of response (e.g., detecting potential for error), showed age-related increases in its sensitivity to the presence of competing color information. These findings are discussed in terms of newly emerging models of attentional control in the human brain.  相似文献   

17.
Visual system has been proposed to be divided into two, the ventral and dorsal, processing streams. The ventral pathway is thought to be involved in object identification whereas the dorsal pathway processes information regarding the spatial locations of objects and the spatial relationships among objects. Several studies on working memory (WM) processing have further suggested that there is a dissociable domain-dependent functional organization within the prefrontal cortex for processing of spatial and nonspatial visual information. Also the auditory system is proposed to be organized into two domain-specific processing streams, similar to that seen in the visual system. Recent studies on auditory WM have further suggested that maintenance of nonspatial and spatial auditory information activates a distributed neural network including temporal, parietal, and frontal regions but the magnitude of activation within these activated areas shows a different functional topography depending on the type of information being maintained. The dorsal prefrontal cortex, specifically an area of the superior frontal sulcus (SFS), has been shown to exhibit greater activity for spatial than for nonspatial auditory tasks. Conversely, ventral frontal regions have been shown to be more recruited by nonspatial than by spatial auditory tasks. It has also been shown that the magnitude of this dissociation is dependent on the cognitive operations required during WM processing. Moreover, there is evidence that within the nonspatial domain in the ventral prefrontal cortex, there is an across-modality dissociation during maintenance of visual and auditory information. Taken together, human neuroimaging results on both visual and auditory sensory systems support the idea that the prefrontal cortex is organized according to the type of information being maintained in WM.  相似文献   

18.
We used fMRI to examine patterns of brain recruitment in 22 healthy seniors, half of whom had selective comprehension difficulty for grammatically complex sentences. We found significantly reduced recruitment of left posterolateral temporal [Brodmann area (BA) 22/21] and left inferior frontal (BA 44/6) cortex in poor comprehenders compared to the healthy seniors with good sentence comprehension, cortical regions previously associated with language comprehension and verbal working memory, respectively. The poor comprehenders demonstrated increased activation of left prefrontal (BA 9/46), right dorsal inferior frontal (BA 44/6), and left posterior cingulate (BA 31/23) cortices for the grammatically simpler sentences that they understood. We hypothesize that these brain regions support an alternate, nongrammatical strategy for processing complex configurations of symbolic information. Moreover, these observations emphasize the crucial role of the left perisylvian network for grammatically guided sentence processing in subjects with good comprehension.  相似文献   

19.
Verbal working memory and sentence comprehension   总被引:5,自引:0,他引:5  
Caplan D  Waters GS 《The Behavioral and brain sciences》1999,22(1):77-94; discussion 95-126
This target article discusses the verbal working memory system used in sentence comprehension. We review the concept of working memory as a short-duration system in which small amounts of information are simultaneously stored and manipulated in the service of accomplishing a task. We summarize the argument that syntactic processing in sentence comprehension requires such a storage and computational system. We then ask whether the working memory system used in syntactic processing is the same as that used in verbally mediated tasks that involve conscious controlled processing. Evidence is brought to bear from various sources: the relationship between individual differences in working memory and individual differences in the efficiency of syntactic processing; the effect of concurrent verbal memory load on syntactic processing; and syntactic processing in patients with poor short-term memory, patients with poor working memory, and patients with aphasia. Experimental results from these normal subjects and patients with various brain lesions converge on the conclusion that there is a specialization in the verbal working memory system for assigning the syntactic structure of a sentence and using that structure in determining sentence meaning that is separate from the working memory system underlying the use of sentence meaning to accomplish other functions. We present a theory of the divisions of the verbal working memory system and suggestions regarding its neural basis.  相似文献   

20.
Flexible control of behavior depends on the representation, maintenance, and updating of context information in working memory, which is thought to rely on the prefrontal cortex (PFC). However, in contrast to maintenance, the dynamics of context activation and updating have not been well studied. To identify neural signals associated with context updating, we compared event-related potentials associated with cues that did or did not provide task-relevant context information. The earliest effect of context was detected 200 msec following cue onset and had a scalp topography consistent with a generator in the PFC. Subsequent effects of context were detected at 400-700 msec following cue onset (P3b), with a broad scalp distribution spanning posterior areas, and during the final 300 msec preceding the target, with a probable generator in the medial frontal cortex. We propose that the effect of context on P2 is consistent with the onset of context updating in the PFC. Subsequent components may be indicative of activation of task-relevant posterior regions and context maintenance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号