首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Language production and cognitive control are complex processes that involve distinct yet interacting brain networks. However, the extent to which these processes interact and their neural bases have not been thoroughly examined. Here, we investigated the neural and behavioral bases of language production and cognitive control via a phonological go/no-go picture-naming task. Naming difficulty and cognitive control demands (i.e., conflict monitoring and response inhibition) were manipulated by varying the proportion of naming trials (go trials) and inhibition trials (no-go trials) across task runs. The results demonstrated that as task demands increased, participants’ behavioral performance declined (i.e., longer reaction times on naming trials, more commission errors on inhibition trials) whereas brain activation generally increased. Increased activation was found not only within the language network but also in domain-general control regions. Additionally, right superior and inferior frontal and left supramarginal gyri were sensitive to increased task difficulty during both language production and response inhibition. We also found both positive and negative brain–behavior correlations. Most notably, increased activation in sensorimotor regions, such as precentral and postcentral gyri, was associated with better behavioral performance, in both successful picture naming and successful inhibition. Moreover, comparing the strength of correlations across conditions indicated that the brain–behavior correlations in sensorimotor regions that were associated with improved performance became stronger as task demands increased. Overall, our results suggest that cognitive control demands affect language production, and that successfully coping with increases in task difficulty relies on both language-specific and domain-general cognitive control regions.  相似文献   

2.
Successful goal pursuit involves repeatedly engaging self-control against temptations or distractions that arise along the way. Laboratory studies have identified the brain systems recruited during isolated instances of self-control, and ecological studies have linked self-control capacity to goal outcomes. However, no study has identified the neural systems of everyday self-control during long-term goal pursuit. The present study integrated neuroimaging and experience-sampling methods to investigate the brain systems of successful self-control among smokers attempting to quit. A sample of 27 cigarette smokers completed a go/no-go task during functional magnetic resonance imaging before they attempted to quit smoking and then reported everyday self-control using experience sampling eight times daily for 3 weeks while they attempted to quit. Increased activation in right inferior frontal gyrus, pre-supplementary motor area, and basal ganglia regions of interest during response inhibition at baseline was associated with an attenuated association between cravings and subsequent smoking. These findings support the ecological validity of neurocognitive tasks as indices of everyday response inhibition.  相似文献   

3.
According to Botvinick’s (2007) integrative account, conflict monitoring is aversive because individuals anticipate cognitive demand, whereas the revised reinforcement sensitivity theory (rRST) predicts that conflict processing is aversive because individuals anticipate aversive reinforcement of erroneous responses. Because these accounts give different reasons for the aversive aspects of conflict, we manipulated cognitive demand and the aversive reinforcement as a consequence of wrong choices in a go/no-go task. Thereby, we also aimed to investigate whether individual differences in conflict sensitivity (i.e., in trait anxiety, linked to high sensitivity of the behavioral inhibition system [trait-BIS]) represent the effects of aversive reinforcement and cognitive demand in conflict tasks. We expected that these manipulations would have effects on the frontal N2 component representing activity of the anterior cingulate cortex. Moreover, higher-trait-BIS individuals should be more sensitive than lower-trait-BIS individuals to aversive effects in conflict situations, resulting in a more negative frontal N2 for higher-trait-BIS individuals. In Study 1, with N = 104 students, and Study 2, with N = 47 students, aversive reinforcement was manipulated in three levels (within-subjects factor) and cognitive demand in two levels (between-subjects factor). The behavioral findings from the go/no-go task with noncounterbalanced reinforcement levels (Study 1) could be widely replicated in a task with counterbalanced reinforcement levels (Study 2). The frontal mean no-go N2 amplitude and the frontal no-go N2 dipole captured predicted reinforcement-related variations of conflict monitoring, indicating that the anticipation of aversive reinforcement induces variations in conflict monitoring intensity in frontal brain areas. The aversive nature of conflict was underlined by the more pronounced conflict monitoring in higher- than in lower-trait-BIS individuals.  相似文献   

4.
It has been suggested that cognitive conflicts require effortful processing and, therefore, are aversive (Botvinick, 2007). In the present study, we compared conflicts emerging from the inhibition of a predominant response tendency in a go/no-go task with those between incompatible response activations in a Simon task in a within-subjects design, using the same type of stimuli. Whereas no-go trials elicited reduced skin conductance and pupillometric responses, but prolonged corrugator muscle activity, as compared with go trials, incompatible and compatible Simon trials were indistinguishable with respect to these parameters. Furthermore, the conflictsensitive N2 components of the event-related brain potential were similar in amplitude, but showed significantly different scalp distributions, indicating dissociable neural generator systems. The present findings suggest the involvement of different emotional and cognitive processes in both types of cognitive conflicts—none being aversive, however. In addition, the N2 findings call into question claims of common monitoring systems for all kinds of cognitive conflicts.  相似文献   

5.
Sensitivity to emotional context is an emerging construct for characterizing adaptive or maladaptive emotion regulation, but few measurement approaches exist. The current study combined behavioral and neurocognitive measures to assess context sensitivity in relation to self-report measures of adaptive emotional flexibility and well-being. Sixty-six adults completed an emotional go/no-go task using happy, fearful, and neutral faces as go and no-go cues, while EEG was recorded to generate event-related potentials (ERPs) reflecting attentional selection and discrimination (N170) and cognitive control (N2). Context sensitivity was measured as the degree of emotional facilitation or disruption in the go/no-go task and magnitude of ERP response to emotion cues. Participants self-reported on emotional flexibility, anxiety, and depression. Overall participants evidenced emotional context sensitivity, such that when happy faces were go stimuli, accuracy improved (greater behavioral facilitation), whereas when fearful faces were no-go stimuli, errors increased (disrupted behavioral inhibition). These indices predicted emotional flexibility and well-being: Greater behavioral facilitation following happy cues was associated with lower depression and anxiety, whereas greater disruption in behavioral inhibition following fearful cues was associated with lower flexibility. ERP indices of context sensitivity revealed additional associations: Greater N2 to fear go cues was associated with less anxiety and depression, and greater N2 and N170 to happy and fear no-go cues, respectively, were associated with greater emotional flexibility and well-being. Results suggest that pleasant and unpleasant emotions selectively enhance and disrupt components of context sensitivity, and that behavioral and ERP indices of context sensitivity predict flexibility and well-being.  相似文献   

6.
To examine the effects of bilingualism on cognitive control, we studied monolingual and bilingual young adults performing a flanker task with functional MRI. The trial types of primary interest for this report were incongruent and no-go trials, representing interference suppression and response inhibition, respectively. Response times were similar between groups. Brain data were analyzed using partial least squares (PLS) to identify brain regions where activity covaried across conditions. Monolinguals and bilinguals activated different sets of brain regions for congruent and incongruent trials, but showed activation in the same regions for no-go trials. During the incongruent trials, monolinguals activated the left temporal pole and left superior parietal regions. In contrast, an extensive network including bilateral frontal, temporal and subcortical regions was active in bilinguals during the incongruent trials and in both groups for the no-go trials. Correlations between brain activity and reaction time difference relative to neutral trials revealed that monolinguals and bilinguals showed increased activation in different brain regions to achieve less interference from incongruent flankers. Results indicate that bilingualism selectively affects neural correlates for suppressing interference, but not response inhibition. Moreover, the neural correlates associated with more efficient suppression of interference were different in bilinguals than in monolinguals, suggesting a bilingual-specific network for cognitive control.  相似文献   

7.
To study the localization of response inhibition in the human brain, especially the role of the prefrontal cortex and laterality of its activation, we used positron emission tomography (PET) to measure regional cerebral blood flow in 11 right-handed participants while they performed a go/no-go and a simple control reaction-time task. In the control task, the participants responded to a target stimulus following a cue stimulus. In the go/no-go task they were instructed to inhibit the required response if the target stimulus did not appear. These tasks were performed using each hand. The right prefrontal cortex was found to be significantly activated when the go/no-go task was compared with the control task, regardless of the responding hand. The results indicated that response inhibition per se may be controlled by the right prefrontal cortex regardless of response hand for right-handed participants.  相似文献   

8.
P50 suppression deficits have been documented in clinical and nonclinical populations, but the behavioral correlates of impaired auditory sensory gating remain poorly understood. In the present study, we examined the relationship between P50 gating and healthy adults’ performance on cognitive inhibition tasks. On the basis of load theory (Lavie, Hirst, de Fockert, & Viding, 2004), we predicted that a high perceptual load, a possible consequence of poor auditory P50 sensory gating, would have differential (i.e., positive vs. negative) effects on performance of cognitive inhibition tasks. A dissociation was observed such that P50 gating was negatively related to interference resolution on a Stroop task and positively related to response inhibition on a go/no-go task. Our findings support the idea that a high perceptual load may be beneficial to Stroop performance because of the reduced processing of distractors but detrimental to performance on the go/no-go task because of interference with stimulus discrimination.  相似文献   

9.
Although there are some studies documenting structural brain changes during late adolescence, there are few showing functional brain changes over this period in humans. Of special interest would be functional changes in the medial frontal cortex that reflect response monitoring. In order to examine such age-related differences, the authors analyzed event-related potentials following errors in a visual flanker task and a go/no-go task in adolescent males, 15-16 and 18-20 years old. Response times and accuracy were comparable between groups on each task, but the younger group made more go/no-go errors, suggesting this task was more difficult. Error-related negativity, thought to be generated in the anterior cingulate cortex (ACC), had greater amplitude for the older adolescents on both tasks; thus the increased errors are not simply due to performance level differences. Results from this study suggest that the ACC, which supports response monitoring, is late to mature due to age-related structural or neurochemical changes.  相似文献   

10.
It is well-known that beliefs about one’s own ability to execute a task influence task performance. Here, we tested the hypothesis that beliefs about a specific self-control capacity, namely pain tolerance, modulate basic cognitive control processes. Participants received fake comparative social feedback that their ability to tolerate painful stimulations was either very poor or outstanding after which they performed an unrelated go/no-go task. Participants receiving low-tolerance feedback, relative to high-tolerance feedback, were less successful at inhibiting their responses and more influenced by previous trial conditions, as indicated by an increased slowdown following errors and more failed inhibitions following go-trials. These observations demonstrate a shift from a more proactive to a more reactive control mode. This study shows that providing feedback about one’s own capacity to control impulsive reactions to painful stimulations directly influences low-level cognitive control dynamics.  相似文献   

11.
Age-related deficits in context processing were examined in relationship to two predominant theories of cognitive aging (the Inhibitory Deficit and Processing Speed Models). Older and younger adults completed a measure of context processing (AX Continuous Performance Test (CPT) task) as well as a computerized battery of inhibitory tasks: Stroop, garden path sentences, go no-go, and the stop-signal paradigm. Participants also completed a simple processing speed task. After controlling for baseline differences in processing speed, age effects were detected on the AX-CPT. Smaller, but significant age effects were noted on the Stroop and stop-signal tasks, but no significant age effects were found on the garden path sentence and go no-go tasks. Intertask correlations were weak, providing little evidence for a homogenous or uniform construct of inhibition. The sensitivity of the AX-CPT to cognitive aging is discussed in the context of existing theories of cognitive aging. The authors suggest that deficits in context processing and utilization may underlie cognitive aging phenomena.  相似文献   

12.
Neuroimaging and computational modeling studies have led to the suggestion that response conflict monitoring by the anterior cingulate cortex plays a key role in cognitive control. For example, response conflict is high when a response must be withheld (no-go) in contexts in which there is a prepotent tendency to make an overt (go) response. An event-related brain potential (ERP) component, the N2, is more pronounced on no-go than on go trials and was previously thought to reflect the need to inhibit the go response. However, the N2 may instead reflect the high degree of response conflict on no-go trials. If so, an N2 should also be apparent when subjects make a go response in conditions in which nogo events are more common. To test this hypothesis, we collected high-density ERP data from subjects performing a go/no-go task, in which the relative frequency of go versus no-go stimuli was varied. Consistent with our hypothesis, an N2 was apparent on both go and no-go trials and showed the properties expected of an ERP measure of conflict detection on correct trials: (1) It was enhanced for low-frequency stimuli, irrespective of whether these stimuli were associated with generating or suppressing a response, and (2) it was localized to the anterior cingulate cortex. This suggests that previous conceptions of the no-go N2 as indexing response inhibition may be in need of revision. Instead, the results are consistent with the view that the N2 in go/no-go tasks reflects conflict arising from competition between the execution and the inhibition of a single response.  相似文献   

13.
Using electrophysiological measures, the authors studied changes in prestimulus state, stimulus identification, and response-related processing when, in a go/no-go task, forced choice between 2 overt go responses was inserted. The authors observed decreased prestimulus motor preparation (electromyogram), no change in stimulus identification time (selection negativity), a minor increase in response selection time (lateralized readiness potential), a large increase in response preparation time (lateralized readiness potential), a minor effect on response execution time (electromyogram), and a decrease in the activation of a response-inhibition process on no-go trials (frontal event-related potential). The existence of the response-inhibition process was verified by the presence of inverted lateralized readiness potentials on no-go trials. Pure insertion of response choice in a task seems impossible because the choice between activation and inhibition (go/no-go) always seems already present.  相似文献   

14.
Inhibition is a core executive function reliant on the frontal lobes that shows protracted maturation through to adulthood. We investigated the spatiotemporal characteristics of response inhibition during a visual go/no-go task in 14 teenagers and 14 adults using magnetoencephalography (MEG) and a contrast between two no-go experimental conditions designed to eliminate a common confound in earlier studies comparing go with no-go trials. Source analyses were performed using an event-related beamformer algorithm with co-registered individual structural MRIs. Performance was controlled to be similar across subjects. Analyses of MEG data revealed bilateral prefrontal activity in the inhibitory condition for both age groups, but with different spatiotemporal patterns: around 300ms after stimulus onset in middle frontal gyri in teenagers vs. around 260ms in inferior frontal gyri in adults. Moreover, the inhibition of a prepotent motor response showed a stronger recruitment of the left hemisphere in teenagers than in adults and of the right hemisphere in adults than in teenagers. These findings provide high-resolution temporal and spatial information regarding response inhibition in adolescents compared to adults, independent of motor components and performance differences.  相似文献   

15.
The lateral prefrontal cortex (LPFC) plays a major role in both working memory (WM) and response inhibition (RI), which are fundamental for various cognitive abilities. We explored the relationship between these LPFC functions during childhood development by examining the performance of two groups of children in visuospatial and auditory WM tasks and a go/no-go RI task. In the younger children (59 5- and 6-year-olds), performance on the visuospatial WM task correlated significantly with that in the auditory WM task. Furthermore, accuracy in these tasks correlated significantly with performance on the RI task, particularly in the no-go trials. In contrast, there were no significant correlations among those tasks in older children (92 8- and 9-year-olds). These results suggest that functional neural systems for visuospatial WM, auditory WM, and RI, especially those in the LPFC, become fractionated during childhood, thereby enabling more efficient processing of these critical cognitive functions.  相似文献   

16.
During the foreperiod (FP) of a warned reaction task, participants engage in a process of temporal preparation to speed response to the impending target stimulus. Previous neurophysiological studies have shown that inhibition is applied during FP to prevent premature response. Previous behavioral studies have shown that the duration of FP on both the current and the preceding trial codetermine response time to the target. Integrating these findings, the present study tested the hypothesis that the behavioral effects find their origin in response inhibition on the preceding trial. In two experiments the variable-FP paradigm was combined with a go/no-go task, in which no-go stimuli required explicit response inhibition. The resulting data pattern revealed sequential effects of both FP (long or short) and response requirement (go or no-go), which could be jointly understood as expressions of response inhibition, consistent with the hypothesis.  相似文献   

17.
ABSTRACT

Age-related deficits in context processing were examined in relationship to two predominant theories of cognitive aging (the Inhibitory Deficit and Processing Speed Models). Older and younger adults completed a measure of context processing (AX Continuous Performance Test (CPT) task) as well as a computerized battery of inhibitory tasks: Stroop, garden path sentences, go no-go, and the stop-signal paradigm. Participants also completed a simple processing speed task. After controlling for baseline differences in processing speed, age effects were detected on the AX-CPT. Smaller, but significant age effects were noted on the Stroop and stop-signal tasks, but no significant age effects were found on the garden path sentence and go no-go tasks. Intertask correlations were weak, providing little evidence for a homogenous or uniform construct of inhibition. The sensitivity of the AX-CPT to cognitive aging is discussed in the context of existing theories of cognitive aging. The authors suggest that deficits in context processing and utilization may underlie cognitive aging phenomena.  相似文献   

18.
In the present research we investigated how action influences affective evaluation. In three experiments, participants conducted a sequence of go/no-go tasks, then evaluated the pleasantness of a novel shape. The results of Experiments 1 and 2 show that participants evaluated the shapes that appeared in the go trials more positively than the shapes that appeared in the no-go trials. In Experiment 3, the go/no-go task was conducted without the to-be-evaluated shapes present in the display. The results show that the shape stimuli following the go trials were evaluated more positively than the shape stimuli following the no-go trials, even when the shapes were not directly associated with the go/no-go task. Based on the present study, we suggest that activating or inhibiting a motoric action may play a critical role in modifying one's affective evaluation. Additionally, the present results suggest that effortful and non-default responses can negatively modulate affective evaluation by taxing an individual's cognitive load. Furthermore, we argue that individuals can potentially control their affective states through behavioral activation and inhibition.  相似文献   

19.
This study examined potential differences between the inattentive and combined ADHD subtypes using laboratory tasks assessing behavioral inhibitory processes. Seventy-five children completed two tasks of behavioral inhibition believed to isolate different processes: the cued reaction time task (CRT), a basic inhibition task, and the go/no-go task (GNG), a complex inhibition task that incorporates motivational contingencies. Three groups of participants were identified, including ADHD/Inattentive (n = 17), ADHD/Combined (n = 37), and comparison (n = 21). Results indicated that rather than showing behavioral inhibition deficits, the ADHD/I children appeared overly inhibited, as evidenced by slower reaction times across the two tasks and significantly higher errors of omission in the GNG task. Additionally, the ADHD/I children did not demonstrate cue dependency effects on the CRT task, suggesting that they were failing to incorporate relevant information before making a response. The sluggish and inhibited performance of the ADHD/I group challenges the idea that it is a subtype of ADHD.  相似文献   

20.
Despite the ubiquity of go/no-go tasks in the study of behavioral inhibition, there is a lack of evidence regarding the impact of key design characteristics, including the go/no-go ratio, intertrial interval, and number of types of go stimuli, on the production of different response classes of central interest. In the present study we sought to empirically determine the optimal conditions to maximize the production of a rare outcome of considerable interest to researchers: false alarms. As predicted, the shortest intertrial intervals (450 ms), intermediate go/no-go ratios (2:1 to 4:1), and the use of multiple types of go stimuli produced the greatest numbers of false alarms. These results are placed within the context of behavioral changes during learning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号