首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Visual feature discrimination tasks in pigeons reveal a right eye/left hemisphere dominance at the population level. Anatomical studies and lesion data show this visual lateralization to be related to asymmetries of the tectofugal system, which ascends from the tectum over the n. rotundus to the forebrain. Anatomically, this system is characterized by numerous morphological and connectional asymmetries which result in a bilateral visual representation in the dominant left hemisphere and a mostly contralateral representation in the subdominant right hemisphere. Ontogenetically, visual lateralization starts with an asymmetrical embryonic position within the egg, which leads to asymmetries of light stimulation. Differences in exposure to light stimulation between the eyes result in activity differences between the ascending tectofugal pathways of the left and the right hemisphere, which are transcribed during a critical time span into morphological asymmetries. The asymmetries established after this transient period finally start to determine the lateralized processes of the visual system for the entire life span of the individual. We now can show that these anatomical lateralizations are accompanied by asymmetries of interocular transfer, which enable a faster shift of learned color cues from the dominant right to the left eye than vice versa. In summary, our data provide evidence that cerebral asymmetries are based both on "static" anatomical and on "dynamic" process-dependent principles.  相似文献   

2.
Perceptual asymmetries in humans typically manifest themselves under quite unnatural settings (e.g., tachistoscopic viewing and dichotic listening) and this has put into question their real biological significance. In animals with laterally placed eyes, however, perceptual asymmetries are ubiquitous in the normal, everyday behavior, as revealed by the differential use of the lateral visual field of the left and right eye in a variety of tasks. Data are presented showing how preferential use of the left and right eyes influences visual discrimination learning and detour behavior in chicks; similarities with detour tests performed in fish and evidence for asymmetries in eye use in animals with larger binocular overlap (e.g., anuran amphibians) are discussed. Implications of these perceptual asymmetries on the formation and fate of memory traces are put forward, with examples from unihemispheric sleep and lateralization of spatial memory in chicks. Finally, speculations about the evolutionary origins and possible adaptive advantages of perceptual asymmetries in vertebrates are presented.  相似文献   

3.
Vallortigara G  Rogers LJ 《The Behavioral and brain sciences》2005,28(4):575-89; discussion 589-633
Recent evidence in natural and semi-natural settings has revealed a variety of left-right perceptual asymmetries among vertebrates. These include preferential use of the left or right visual hemifield during activities such as searching for food, agonistic responses, or escape from predators in animals as different as fish, amphibians, reptiles, birds, and mammals. There are obvious disadvantages in showing such directional asymmetries because relevant stimuli may be located to the animal's left or right at random; there is no a priori association between the meaning of a stimulus (e.g., its being a predator or a food item) and its being located to the animal's left or right. Moreover, other organisms (e.g., predators) could exploit the predictability of behavior that arises from population-level lateral biases. It might be argued that lateralization of function enhances cognitive capacity and efficiency of the brain, thus counteracting the ecological disadvantages of lateral biases in behavior. However, such an increase in brain efficiency could be obtained by each individual being lateralized without any need to align the direction of the asymmetry in the majority of the individuals of the population. Here we argue that the alignment of the direction of behavioral asymmetries at the population level arises as an "evolutionarily stable strategy" under "social" pressures occurring when individually asymmetrical organisms must coordinate their behavior with the behavior of other asymmetrical organisms of the same or different species.  相似文献   

4.
Lateralization of a food search task in the domestic chick   总被引:2,自引:0,他引:2  
Monocularly occluded Warren sex-linked domestic chicks (Gallus domesticus) were presented with a search test which required the differentiation of familiar food grains from unfamiliar pebbles bearing a strong resemblance to food. Male and female chicks using their left eye performed this discrimination significantly more poorly than did chicks using their right eye, both during learning and after asymptotic performance was reached. This left/right difference was superimposed upon a difference between the sexes, with females pecking fewer pebbles than males. Because of the complexity of the search test utilized, it is difficult to determine whether the left/right difference found is attributable to lateralization of visual discrimination ability or to other factors, such as lateralized differences in food search pattern or investigatory responses to novel pebbles. Nevertheless, asymmetric responses of this type provide additional evidence that lateralization of function in the brain, long thought to be a uniquely human phenomenon, is widespread among vertebrates.  相似文献   

5.
Single items such as objects, letters or words are often presented in the right or left visual field to examine hemispheric differences in cognitive processing. However, in everyday life, such items appear within a visual context or scene that affects how they are represented and selected for attention. Here we examine processing asymmetries for a visual target within a frame of other elements (scene). We are especially interested in whether the allocation of visual attention affects the asymmetries, and in whether attention-related asymmetries occur in scenes oriented out of alignment with the viewer. In Experiment 1, visual field asymmetries were affected by the validity of a spatial precue in an upright frame. In Experiment 2, the same pattern of asymmetries occurred within frames rotated 90 degrees on the screen. In Experiment 3, additional sources of the spatial asymmetries were explored. We conclude that several left/right processing asymmetries, including some associated with the deployment of spatial attention, can be organized within scenes, in the absence of differential direct access to the two hemispheres.  相似文献   

6.
Visual lateralization in different aspects of social behaviour has been found for numerous species of vertebrates ranging from fish to mammals. For inspection of a shoal mate, many fishes show a left eye–right hemisphere preference. Here, we tested the hypothesis that in fish, there is a key cue in the conspecific appearance, which elicits lateralized response to the whole image of the conspecific. In a series of eight experiments, we explored eye preferences in cryptic-coloured Amur sleeper, Perccottus glenii, fry. Fish displayed left-eye preferences at the population level for inspection of a group of conspecifics, their own mirror image, and a motionless flat model of a conspecific. In contrast, no population bias was found for scrutinizing an empty environment or a moving cylinder. When fry were showed a model of a conspecific in a lateral view with the eye displaced from the head to the tail, they again showed a significant preference for left-eye use. On the other hand, ‘eyeless’ conspecific model elicited no lateralized viewing in fry. Finally, the left-eye preference was revealed for scrutiny of the image of a conspecific eye alone. We argue that in Amur sleeper fry, eye is the element of the conspecific image, which can serve as a ‘key’ for the initiation of lateralized social response. This key element may serve as a trigger for the rapid recognition of conspecifics in the left eye–right hemisphere system. Possible causes and advantages of lateralized perception of social stimuli and their key elements are discussed in the context of current theories of brain lateralization.  相似文献   

7.
Three experiments have tested for the existence of laterality effects in iconic storage by employing a Sperling partial-report paradigm and lateralized presentations of alphabetical or pattern material. Even though an overall laterality effect was found in favor of the right visual field for the alphabetical material and in favor of the left visual field for the pattern material, the amount and time decay of partial-report advantage was similar in the two visual fields. These results indicate that hemispheric asymmetries occur beyond the iconic stage of visual information processing.  相似文献   

8.
Asymmetries of emotional facial expressions in humans offer reliable indexes to infer brain lateralization and mostly revealed right hemisphere dominance. Studies concerned with oro-facial asymmetries in nonhuman primates largely showed a left-sided asymmetry in chimpanzees, marmosets and macaques. The presence of asymmetrical oro-facial productions was assessed in Olive baboons in order to determine the functional cerebral asymmetries. Two affiliative behaviors (lipsmack, copulation call) and two agonistic ones (screeching, eyebrow-raising) were recorded. For screeching, a strong and significant left hemimouth bias was found, but no significant bias was observed for the other behaviors. These results are discussed in the light of the available literature concerning asymmetrical oro-facial productions in nonhuman primates. In addition, these findings suggest that human hemispheric specialization for emotions has precursors in primate evolution.  相似文献   

9.
Cerebral laterality was examined for third-, fourth-, and fifth-grade deaf and hearing subjects. The experimental task involved the processing of word and picture stimuli presented singly to the right and left visual hemifields. The analyses indicated the deaf children were faster than the hearing children in overall processing efficiency, and that they performed differently in regard to hemispheric lateralization. The deaf children processed the stimuli more efficiently in the right hemisphere, while the hearing children demonstrated a left-hemisphere proficiency. This finding is discussed in terms of the hypothesis that cerebral lateralization is influenced by auditory processing.  相似文献   

10.
Brain lateralization enables preferential processing of certain stimuli and more effective utilization of these stimuli in either the left or the right cerebral hemisphere. Horses show both motor and sensory lateralization patterns. Our aim was to determine whether a lateralized response could be detected in foals during the naturally side-biased behaviour, suckling. The foals’ preferred suckling side could be the effect of either visual or motor lateralization. In the case of a visual lateralized response, foals are expected to suck more often from the mother’s right side, so potential danger can be detected by the better adapted right hemisphere (i.e. left eye). Motor lateralization can be identified when a foal will suck predominantly from one side, either left or right. We found no population trend in the preferred suckling side, but we detected significant differences amongst individual foals. One-third (35.4 %) of 79 foals showed a strong, either right or left side preference which increased with age. The mothers did not influence the foals’ suckling side preferences either by side-biased rejection or termination of suckling. According to our findings, a general pattern of sucking with the left eye open for better danger detection and recognition is unlikely in foals up to 7 months old. Foals of this age are probably young or fully focused on suckling and rely on their mothers’ vigilance. Individual side preferences amongst foals are suggested to be based on motor lateralization.  相似文献   

11.
B6D2F1 hybrid mice that were allowed to observe a trained female mouse open a pendulum door to the right (or to the left) to enter a food compartment later solved this problem faster than pupils that had been placed behind a visual barrier. Male pupils that had observed a "left-handed" teacher performed sinistrally; males that had observed a "right-handed" model performed dextrally. Female pupils did not exhibit their demonstrator's laterality. Observational learning may provide a means to maintain certain lateralized behaviors. Such social learning may lead to the emergence of local traditions and to the cultural diffusion of behavioral asymmetries.  相似文献   

12.
The present study investigated the relationship between cognitive laterality and dream recall, dream characteristics, and eye movement density in rapid eye movement (REM) sleep. Fifty-two right-handed males, age 20-30 years, were tested on a six-test battery of which three tests measure right hemisphere function and three tests measure left hemisphere function. Based on their performance, 14 subjects were selected for a sleep laboratory study. Each spent 3 experimental nights in the laboratory during which they were awakened from REM sleep for dream reports. Dream reports were scored for bizarreness, emotions, visual elements, and overall "dreamlike" versus "thoughtlike" character. Subjects were awakened from 123 REM periods, of which 96 yielded positive dream reports (78.04%). Neither the rate of recall nor the four evaluation scores were correlated with the laterality scores that were constructed from the six-test battery. Eye movement density during REM sleep was significantly positively correlated with the total performance of the two hemispheres. These results do not support the alleged lateralization of dreaming. In agreement with recent reports in the literature, it is concluded that dreaming cannot be seen as a "right hemisphere" function.  相似文献   

13.
We propose that much of the variance among right-handed subjects in perceptual asymmetries on standard behavioral measures of laterality arises from individual differences in characteristic patterns of asymmetric hemispheric arousal. Dextrals with large right-visual-field (RVF) advantages on a tachistoscopic syllable-identification task (assumed to reflect characteristically higher left-hemisphere than right-hemisphere arousal) outperformed those having weak or no visual-field asymmetries (assumed to reflect characteristically higher right-hemisphere than left-hemisphere arousal). The two groups were equal, however, in asymmetries of error patterns that are thought to indicate linguistic or nonlinguistic encoding strategies. For both groups, relations between visual fields in the ability to discriminate the accuracy of performance followed the pattern of syllable identification itself, suggesting that linguistic and metalinguistic processes are based on the same laterally specialized functions. Subjects with strong RVF advantages had a pessimistic bias for rating performance, and those with weak or no asymmetries had an optimistic bias, particularly for the left visual field (LVF). This is concordant with evidence that the arousal level of the right hemisphere is closely related to affective mood. Finally, consistent with the arousal model, leftward asymmetries on a free-vision face-processing task became larger as RVF advantages on the syllable task diminished and as optimistic biases for the LVF, relative to the RVF, increased.  相似文献   

14.
Cerebral lateralization, the partitioning of functions into a certain hemisphere of the brain, is ubiquitous among vertebrates. Evidence suggests that the cognitive processing of a stimulus is performed with a specific hemisphere depending in part upon the emotional valence of the stimulus (i.e. whether it is appetitive or aversive). Recent work has implicated a predominance of right-hemisphere processing for aversive stimuli. In fish with laterally placed eyes, the preference to view an object with a specific eye has been used as a proxy for assessing cerebral lateralization. The habenula, one of the most well-known examples of an asymmetrical neural structure, has been linked to behavioural asymmetry in some fish species. Here, we exposed convict cichlid fish (Amatitlania nigrofasciata) to both a social and non-social lateralization task and assessed behavioural lateralization in either the presence or absence of an aversive stimulus, damage-induced alarm cues. We also assessed whether behavioural asymmetry in these tests was related to asymmetry of the habenular nuclei. We found that when alarm cues were present, fish showed increased left-eye (and by proxy, right hemisphere) preference for stimulus viewing. In addition, females, but not males, showed stronger eye preferences when alarm cues were present. We did not find a relationship between behavioural lateralization and habenular lateralization. Our results conflict with previous reports of concordance between behavioural and habenular lateralization in this fish species. However, our results do provide support for the hypothesis of increased right-hemisphere use when an organism is exposed to aversive stimuli.  相似文献   

15.
Evoked potentials to laterally presented stimuli were collected from left and right tempero-parietal sites during performance of two visual half-field tasks, lexical decision, and line orientation discrimination. Reaction time and accuracy data were simultaneously collected. The behavioral data indicated the development of a right field advantage for the lexical decision task as a function of practice. A principal components analysis revealed three independent evoked potential components which displayed task-dependent hemispheric asymmetries. Multiple regression analyses revealed that visual half-field asymmetries in response accuracy were closely related to hemispheric asymmetries on several independent evoked response components. Subject's scores on independent tests of verbal reasoning and spatial relations were also found to be closely related to hemispheric asymmetry on several independent evoked response components. These data support a multidimensional concept of cerebral specialization. They also suggest that visual field asymmetries reflect the confluence of several underlying processes which have independent lateralization distributions across the population. In general, the results underscore the need for further research on the nature of the relationship between cerebral and perceptual asymmetries.  相似文献   

16.
Research in cerebral laterality supports the idea that functional differences between the left and right hemispheres exist with respect to cognitive style and perceptual ability. Related research, which has examined autonomic nervous system (ANS) correlates of cerebral laterality, suggests that a component of the ANS, electrodermal activity (EDA), is also lateralized. Some findings in the literature report the occurrence of bilateral asymmetries in phasic and tonic EDA as a function of a left or right hemisphere preference for information processing. This experiment used normal male subjects who were either left or right movers in a test of Conjugate Lateral Eye Movement (CLEM). This selection procedure served to maximize a subject’s preference for either a right or left hemisphere mode of information processing. Bilateral EDA was recorded continuously while subjects performed a visual recognition task using word (left hemisphere) and shape (right hemisphere) stimuli. The data do not support the contention that performance on a procedure chosen to selectively activate a given hemisphere elicits asymmetric tonic and/or phasic EDA. The results show no significant difference in the frequency of elicited skin conductance responses under either of the experimental conditions. Bilateral tonic EDA rose continuously over time and did not vary in either hand as a function of task. The present results fail to offer support for either of the hypotheses which argue for I) increased contralateralexcitation with selective hemispheric activation, or 2) increased contralateralinhibition of the EDR with hemispheric arousal.  相似文献   

17.
Most horses have a side on which they are easier to handle and a direction they favour when working on a circle, and recent studies have suggested a correlation between emotion and visual laterality when horses observe inanimate objects. As such lateralisation could provide important clues regarding the horse’s cognitive processes, we investigated whether horses also show laterality in association with people. We gave horses the choice of entering a chute to left or right, with and without the passive, non-interactive presence of a person unknown to them. The left eye was preferred for scanning under both conditions, but significantly more so when a person was present. Traditionally, riders handle horses only from the left, so we repeated the experiment with horses specifically trained on both sides. Again, there was a consistent preference for left eye scanning in the presence of a person, whether known to the horses or not. We also examined horses interacting with a person, using both traditionally and bilaterally trained horses. Both groups showed left eye preference for viewing the person, regardless of training and test procedure. For those horses tested under both passive and interactive conditions, the left eye was preferred significantly more during interaction. We suggest that most horses prefer to use their left eye for assessment and evaluation, and that there is an emotional aspect to the choice which may be positive or negative, depending on the circumstances. We believe these results have important practical implications and that emotional laterality should be taken into account in training methods.  相似文献   

18.
Two “same-different” reaction time experiments, analogous in task demands made on the S, were designed to test laterality differences in. perception. Ten normal right-handed Ss performed a verbal task in which they decided whether or not two three-letter words belonged to the same conceptual class. Ten different Ss performed a spatial task in which they decided whether two 16-cell matrices with 3 blackened cells were identical. Reaction times were found to be sensitive to laterality differences in perception. Verbal stimuli were processed faster when presented in the right visual field, and thus projected directly to the left cerebral hemisphere; spatial stimuli were processed faster when presented in the left visual field, and thus projected directly to the right cerebral hemisphere. These results were analyzed in terms of implications regarding hemispheric asymmetries for processing of verbal and spatial material and the nature of interhemispheric transfer of information.  相似文献   

19.
Perceptual characteristics in visual laterality research   总被引:2,自引:1,他引:1  
Visual laterality experiments from the last three decades are reviewed. The criterion for inclusion was the independent manipulation within a constant task paradigm of one or more of the following perceptual parameters: retinal eccentricity, stimulus size, luminance, contrast, blurring/degradation, and exposure duration. These results are discussed in light of a model of hemispheric lateralization based on asymmetries in the processing of visual spatial frequency.  相似文献   

20.
Paradis (1992) likens studies of bilingual laterality to reported sightings of the Loch Ness Monster, in that although some studies claim differential laterality much conflicting research evidence does not-and like the mythical Scottish monster, what reason have we to suspect that any such phenomenon might exist? This study reexamines differential bilingual laterality using four groups of English-Welsh bilinguals which differ in their age of acquisition and in their environment of acquisition. Using a split visual field paradigm we present evidence which, supports the notion of greater right hemisphere processing in a later learned language. Our findings also suggest the pattern of lateralization in bilinguals is strongly affected by the specific language environment during development such that the shift toward greater right hemisphere involvement for the later learned language will be more pronounced in individuals which are brought up in areas where that language is not regularly heard.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号