首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
We investigate the hypothesis that those subregions of the prefrontal cortex (PFC) found to support proactive interference resolution may also support delay-spanning distractor interference resolution. Ten subjects performed delayed-recognition tasks requiring working memory for faces or shoes during functional MRI scanning. During the 15-sec delay interval, task-irrelevant distractors were presented. These distractors were either all faces or all shoes and were thus either congruent or incongruent with the domain of items in the working memory task. Delayed-recognition performance was slower and less accurate during congruent than during incongruent trials. Our fMRI analyses revealed significant delay interval activity for face and shoe working memory tasks within both dorsal and ventral PFC. However, only ventral PFC activity was modulated by distractor category, with greater activity for congruent than for incongruent trials. Importantly, this congruency effect was only present for correct trials. In addition to PFC, activity within the fusiform face area was investigated. During face distraction, activity was greater for face relative to shoe working memory. As in ventrolateral PFC, this congruency effect was only present for correct trials. These results suggest that the ventrolateral PFC and fusiform face area may work together to support delay-spanning interference resolution.  相似文献   

5.
6.
To examine the nature of age-dependent cognitive decline, performance in terms of concurrent object discriminations was assessed in aged and nonaged Japanese monkeys (Macaca fuscata). Aged monkeys required more sessions and committed more errors than nonaged ones in the discriminations, even in simple object discriminations. Analyses of errors suggest that aged monkeys repeated the same errors and committed more errors when they chose a negative object at the 1st trial. A hypothesis analysis of behavior suggests that their incorrect choices were mainly due to object preference. Therefore, the impairment was probably caused by a failure to inhibit inappropriate responses. Together with previous neuropsychological findings, deficits of aged monkeys in the performance of object discriminations can be explained by dysfunction of the frontal cortex.  相似文献   

7.
8.
9.
10.
11.
The ability to remember is often compromised by competition from irrelevant memories. However, acts of selective remembering can alter the competitive relationship between memories; memories that are selected against are weakened, whereas those that are retrieved are strengthened. Whereas the weakening of selectedagainst memories is typically evidenced by subsequently poorer recall of these memories, the present study tested the hypothesis that when previously selected-against memories can subsequently be successfully retrieved, such acts of successful retrieval are associated with engagement of neurobiological mechanisms that serve to detect and overcome competition. Consistent with this hypothesis, fMRI revealed that anterior cingulate cortex and right ventrolateral prefrontal cortex are differentially engaged during successful retrieval of previously selected-against memories, and that their engagement is directly related to the magnitude of weakening that is induced by prior acts of selecting against these memories.  相似文献   

12.
13.
14.
15.
16.
We trained rhesus monkeys on six visual discrimination problems using stimuli that varied in both shape and colour. For one group of animals shape was always relevant in these six problems, and colour always irrelevant, and for the other animals vice versa. During these “intradimensional shifts” (ID) the problems were learned at equal rates by the two groups, shape-relevant and colour-relevant. We then trained three further problems in which the other dimension was now relevant (“extradimensional shifts”, ED). The animals showed slower learning when shifting from colour-relevant to shape-relevant, but not when shifting from shape-relevant to colour-relevant. These results show that monkeys' ability to selectively attend to a relevant stimulus dimension and to ignore an irrelevant dimension depends on the experimenter's choice of relevant and irrelevant dimensions.  相似文献   

17.
We trained rhesus monkeys on six visual discrimination problems using stimuli that varied in both shape and colour. For one group of animals shape was always relevant in these six problems, and colour always irrelevant, and for the other animals vice versa. During these "intradimensional shifts" (ID) the problems were learned at equal rates by the two groups, shape-relevant and colour-relevant. We then trained three further problems in which the other dimension was now relevant ("extradimensional shifts", ED). The animals showed slower learning when shifting from colour-relevant to shape-relevant, but not when shifting from shape-relevant to colour-relevant. These results show that monkeys' ability to selectively attend to a relevant stimulus dimension and to ignore an irrelevant dimension depends on the experimenter's choice of relevant and irrelevant dimensions.  相似文献   

18.
19.
20.
Neuroimaging studies have shown that the dorsolateral prefrontal cortex (DLPFC) is recruited during motor skill learning, which suggests the involvement of the DLPFC in working memory (WM) processes, such as selection and integration of motor representations temporarily stored in WM. However, direct evidence linking activation of the DLPFC to WM storage and manipulation during motor skill learning in real-time is rare. In this study, we conducted two experiments to investigate the causal role of DLPFC activity in WM storage and manipulation during motor skill learning under low and high WM-demand conditions. Participants received continuous theta burst stimulation (cTBS) and sham stimulation (crossover design) over the left DLPFC (experiment 1) or right DLPFC (experiment 2). Before and after stimulation, participants in both experiments performed a sequential finger-tapping (SFT) task containing repeated sequence (low-WM demand) and non-repeated sequence (high-WM demand) conditions which are used to study WM processes. The number of correct sequences (NoCS) and reproduction error rate were analyzed. Learning gains in NoCS improved significantly with the practice for both sequence types in the presence of either stimulation type. Compared to sham stimulation, cTBS over the left DLPFC resulted in significantly reduced learning gains in NoCS for non-repeated sequences. These results suggest that the left DLPFC contributes to WM manipulation during motor skill learning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号