首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
We investigate the hypothesis that those subregions of the prefrontal cortex (PFC) found to support proactive interference resolution may also support delay-spanning distractor interference resolution. Ten subjects performed delayed-recognition tasks requiring working memory for faces or shoes during functional MRI scanning. During the 15-sec delay interval, task-irrelevant distractors were presented. These distractors were either all faces or all shoes and were thus either congruent or incongruent with the domain of items in the working memory task. Delayed-recognition performance was slower and less accurate during congruent than during incongruent trials. Our fMRI analyses revealed significant delay interval activity for face and shoe working memory tasks within both dorsal and ventral PFC. However, only ventral PFC activity was modulated by distractor category, with greater activity for congruent than for incongruent trials. Importantly, this congruency effect was only present for correct trials. In addition to PFC, activity within the fusiform face area was investigated. During face distraction, activity was greater for face relative to shoe working memory. As in ventrolateral PFC, this congruency effect was only present for correct trials. These results suggest that the ventrolateral PFC and fusiform face area may work together to support delay-spanning interference resolution.  相似文献   

3.
4.
5.
To examine the nature of age-dependent cognitive decline, performance in terms of concurrent object discriminations was assessed in aged and nonaged Japanese monkeys (Macaca fuscata). Aged monkeys required more sessions and committed more errors than nonaged ones in the discriminations, even in simple object discriminations. Analyses of errors suggest that aged monkeys repeated the same errors and committed more errors when they chose a negative object at the 1st trial. A hypothesis analysis of behavior suggests that their incorrect choices were mainly due to object preference. Therefore, the impairment was probably caused by a failure to inhibit inappropriate responses. Together with previous neuropsychological findings, deficits of aged monkeys in the performance of object discriminations can be explained by dysfunction of the frontal cortex.  相似文献   

6.
7.
8.
The ability to remember is often compromised by competition from irrelevant memories. However, acts of selective remembering can alter the competitive relationship between memories; memories that are selected against are weakened, whereas those that are retrieved are strengthened. Whereas the weakening of selectedagainst memories is typically evidenced by subsequently poorer recall of these memories, the present study tested the hypothesis that when previously selected-against memories can subsequently be successfully retrieved, such acts of successful retrieval are associated with engagement of neurobiological mechanisms that serve to detect and overcome competition. Consistent with this hypothesis, fMRI revealed that anterior cingulate cortex and right ventrolateral prefrontal cortex are differentially engaged during successful retrieval of previously selected-against memories, and that their engagement is directly related to the magnitude of weakening that is induced by prior acts of selecting against these memories.  相似文献   

9.
10.
11.
12.
We trained rhesus monkeys on six visual discrimination problems using stimuli that varied in both shape and colour. For one group of animals shape was always relevant in these six problems, and colour always irrelevant, and for the other animals vice versa. During these "intradimensional shifts" (ID) the problems were learned at equal rates by the two groups, shape-relevant and colour-relevant. We then trained three further problems in which the other dimension was now relevant ("extradimensional shifts", ED). The animals showed slower learning when shifting from colour-relevant to shape-relevant, but not when shifting from shape-relevant to colour-relevant. These results show that monkeys' ability to selectively attend to a relevant stimulus dimension and to ignore an irrelevant dimension depends on the experimenter's choice of relevant and irrelevant dimensions.  相似文献   

13.
14.
Converging evidence from human lesion, animal lesion, and human functional neuroimaging studies implicates overlapping neural circuitry in ventral prefrontal cortex in decision-making and reversal learning. The ascending 5-HT and dopamine neurotransmitter systems have a modulatory role in both processes. There is accumulating evidence that measures of decision-making and reversal learning may be useful as functional markers of ventral prefrontal cortex integrity in psychiatric and neurological disorders. Whilst existing measures of decision-making may have superior sensitivity, reversal learning may offer superior selectivity, particularly within prefrontal cortex. Effective decision-making on existing measures requires the ability to adapt behaviour on the basis of changes in emotional significance, and this may underlie the shared neural circuitry with reversal learning.  相似文献   

15.
16.
17.
The corpus callosum (CC) is the largest white matter tract in the brain. It enables interhemispheric communication, particularly with respect to bimanual coordination. Here, we use diffusion tensor imaging (DTI) in healthy humans to determine the extent to which structural organization of subregions within the CC would predict how well subjects learn a novel bimanual task. A single DTI scan was taken prior to training. Participants then practiced a bimanual visuomotor task over the course of 2 wk, consisting of multiple coordination patterns. Findings revealed that the predictive power of fractional anisotropy (FA) was a function of CC subregion and practice. That is, FA of the anterior CC, which projects to the prefrontal cortex, predicted bimanual learning rather than the middle CC regions, which connect primary motor cortex. This correlation was specific in that FA correlated significantly with performance of the most difficult frequency ratios tested and not the innately preferred, isochronous frequency ratio. Moreover, the effect was only evident after training and not at initiation of practice. This is the first DTI study in healthy adults which demonstrates that white matter organization of the interhemispheric connections between the prefrontal structures is strongly correlated with motor learning capability.  相似文献   

18.
In conventional discrimination learning-set formation, it is possible that rhesus monkeys (Macaca mulatta) learn to lay down prospective memories by anticipating the next trial and deciding in advance what choice will be made. To test this hypothesis, the authors administered discrimination problems with 24-hr intertrial intervals, predicting that these long intervals would disrupt or prevent the putative anticipation of the next trial. Confirming their expectation, the authors found no indication of learning-set formation under these conditions.  相似文献   

19.
Experiments with 9 rhesus monkeys (Macaca mulatta) showed, for the first time, that abstract-concept learning varied with the training stimulus set size. In a same/different task, monkeys required to touch a top picture before choosing a bottom picture (same) or white rectangle (different) learned rapidly. Monkeys not required to touch the top picture or presented with the top picture for a fixed time learned slowly or not at all. No abstract-concept learning occurred after 8-item training but progressively improved with larger set sizes and was complete following 128-item training. A control monkey with a constant 8-item set ruled out repeated training and testing. Contrary to the unique-species account, it is argued that different species have quantitative, not qualitative, differences in abstract-concept learning.  相似文献   

20.
Three monkeys with bilateral lesions of inferotemporal cortex and three unoperated controls (all previously sophisticated at visual discriminations) learned 60 discriminations between pairs of multi-featured computer-generated patterns. They then learned 5 problem sets, each composed of 5 pairs of the same kind learned concurrently, and finally 20 more single discriminations.

Previous reports that inferotemporal lesions selectively impair concurrent learning were disconfirmed; given practice at learning pairs concurrently, the inferotemporals learned these at a similar rate to single pairs. Analysis of intra-problem learning supported the suggestion that the lesion affects visual identification (the ability to distinguish objects within a large population) rather than visual association or memory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号