首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conclusion It has been argued that the attempt to meet indispensability arguments for realism in mathematics, by appeal to counterfactual statements, presupposes a view of mathematical modality according to which even though mathematical entities do not exist, they might have existed. But I have sought to defend this controversial view of mathematical modality from various objections derived from the fact that the existence or nonexistence of mathematical objects makes no difference to the arrangement of concrete objects. This defense of the controversial view of mathematical modality obviously falls far short of a full endorsement of the counterfactual approach, but I hope my remarks may serve to help keep such an approach a live option.  相似文献   

2.
In this paper I argue for the view that structuralism offers the best perspective for an acceptable account of the applicability of mathematics in the empirical sciences. Structuralism, as I understand it, is the view that mathematics is not the science of a particular type of objects, but of structural properties of arbitrary domains of entities, regardless of whether they are actually existing, merely presupposed or only intentionally intended.  相似文献   

3.
It is a common thought that mathematics can be not only true but also beautiful, and many of the greatest mathematicians have attached central importance to the aesthetic merit of their theorems, proofs and theories. But how, exactly, should we conceive of the character of beauty in mathematics? In this paper I suggest that Kant's philosophy provides the resources for a compelling answer to this question. Focusing on §62 of the ‘Critique of Aesthetic Judgment’, I argue against the common view that Kant's aesthetics leaves no room for beauty in mathematics. More specifically, I show that on the Kantian account beauty in mathematics is a non‐conceptual response felt in light of our own creative activities involved in the process of mathematical reasoning. The Kantian proposal I thus develop provides a promising alternative to Platonist accounts of beauty widespread among mathematicians. While on the Platonist conception the experience of mathematical beauty consists in an intellectual insight into the fundamental structures of the universe, according to the Kantian proposal the experience of beauty in mathematics is grounded in our felt awareness of the imaginative processes that lead to mathematical knowledge. The Kantian account I develop thus offers to elucidate the connection between aesthetic reflection, creative imagination and mathematical cognition.  相似文献   

4.
5.
The modern mathematical theory of dynamical systems proposes a new model of mechanical motion. In this model the deterministic unstable systems can behave in a statistical manner. Both kinds of motion are inseparably connected, they depend on the point of view and researcher's approach to the system. This mathematical fact solves in a new way the old problem of statistical laws in the world which is essentially deterministic. The classical opposition: deterministic‐statistical, disappears in random dynamics. The main thesis of the paper is that the new theory of motion is a revolution in the research programme of classical mechanics. It is the revolution brought about by the development of mathematics.  相似文献   

6.
Charles Chihara 《Synthese》2010,176(2):153-175
The present paper will argue that, for too long, many nominalists have concentrated their researches on the question of whether one could make sense of applications of mathematics (especially in science) without presupposing the existence of mathematical objects. This was, no doubt, due to the enormous influence of Quine’s “Indispensability Argument”, which challenged the nominalist to come up with an explanation of how science could be done without referring to, or quantifying over, mathematical objects. I shall admonish nominalists to enlarge the target of their investigations to include the many uses mathematicians make of concepts such as structures and models to advance pure mathematics. I shall illustrate my reasons for admonishing nominalists to strike out in these new directions by using Hartry Field’s nominalistic view of mathematics as a model of a philosophy of mathematics that was developed in just the sort of way I argue one should guard against. I shall support my reasons by providing grounds for rejecting both Field’s fictionalism and also his deflationist account of mathematical knowledge—doctrines that were formed largely in response to the Indispensability Argument. I shall then give a refutation of Mark Balaguer’s argument for his thesis that fictionalism is “the best version of anti-realistic anti-platonism”.  相似文献   

7.
Audrey Yap 《Synthese》2009,171(1):157-173
There are two general questions which many views in the philosophy of mathematics can be seen as addressing: what are mathematical objects, and how do we have knowledge of them? Naturally, the answers given to these questions are linked, since whatever account we give of how we have knowledge of mathematical objects surely has to take into account what sorts of things we claim they are; conversely, whatever account we give of the nature of mathematical objects must be accompanied by a corresponding account of how it is that we acquire knowledge of those objects. The connection between these problems results in what is often called “Benacerraf’s Problem”, which is a dilemma that many philosophical views about mathematical objects face. It will be my goal here to present a view, attributed to Richard Dedekind, which approaches the initial questions in a different way than many other philosophical views do, and in doing so, avoids the dilemma given by Benacerraf’s problem.  相似文献   

8.
Mathematical apriorists usually defend their view by contending that axioms are knowable a priori, and that the rules of inference in mathematics preserve this apriority for derived statements—so that by following the proof of a statement, we can trace the apriority being inherited. The empiricist Philip Kitcher attacked this claim by arguing there is no satisfactory theory that explains how mathematical axioms could be known a priori. I propose that in analyzing Ernest Sosa’s model of intuition as an intellectual virtue, we can construct an “intuition–virtue” that could supply the missing explanation for the apriority of axioms. I first argue that this intuition–virtue qualifies as an a priori warrant according to Kitcher’s account, and then show that it could produce beliefs about mathematical axioms independent of experience. If my argument stands, this paper could provide insight on how virtue epistemology could help defend mathematical apriorism on a larger scale.  相似文献   

9.
David S. Henley 《Erkenntnis》1995,43(2):241-259
It is shown how mathematical discoveries such as De Moivre's theorem can result from patterns among the symbols of existing formulae and that significant mathematical analogies are often syntactic rather than semantic, for the good reason that mathematical proofs are always syntactic, in the sense of employing only formal operations on symbols. This radically extends the Lakatos approach to mathematical discovery by allowing proof-directed concepts to generate new theorems from scratch instead of just as evolutionary modifications to some existing theorem. The emphasis upon syntax and proof permits discoveries to go beyond the limits of any prevailing semantics. It also helps explain the shortcomings of inductive AI systems of mathematics learning such as Lenat's AM, in which proof has played no part in the formation of concepts and conjectures.  相似文献   

10.
Martin  James V. 《Topoi》2022,41(5):987-1002

Annalisa Coliva (Int J Study Skept 10(3–4):346–366, 2020) asks, “Are there mathematical hinges?” I argue here, against Coliva’s own conclusion, that there are. I further claim that this affirmative answer allows a case to be made for taking the concept of a hinge to be a useful and general-purpose tool for studying mathematical practice in its real complexity. Seeing how Wittgenstein can, and why he would, countenance mathematical hinges additionally gives us a deeper understanding of some of his latest thoughts on mathematics. For example, a view of how mathematical hinges relate to Wittgenstein’s well-known river-bed analogy enables us to see how his way of thinking about mathematics can account nicely for a “dynamics of change” within mathematical research—something his philosophy of mathematics has been accused of missing (e.g., by Robert Ackermann (Wittgenstein’s city, The University of Massachusetts Press, Amherst, 1988) and Mark Wilson (Wandering significance: an essay on conceptual behavior, Oxford University Press, Oxford, 2006). Finally, the perspective on mathematical hinges ultimately arrived at will be seen to provide us with illuminating examples of how our conceptual choices and theories can be ungrounded but nevertheless the right ones (in a sense to be explained).

  相似文献   

11.
I articulate Charles S. Peirce’s philosophy of mathematical education as related to his conception of mathematics, the nature of its method of inquiry, and especially, the reasoning abilities required for mathematical inquiry. The main thesis is that Peirce’s philosophy of mathematical education primarily aims at fostering the development of the students’ semeiotic abilities of imagination, concentration, and generalization required for conducting mathematical inquiry by way of experimentation upon diagrams. This involves an emphasis on the relation between theory and practice and between mathematics and other fields including the arts and sciences. For achieving its goals, the article is divided in three sections. First, I expound Peirce’s philosophical account of mathematical reasoning. Second, I illustrate this account by way of a geometrical example, placing special emphasis on its relation to mathematical education. Finally, I put forth some Peircean philosophical principles for mathematical education.  相似文献   

12.
13.
Cellucci  Carlo 《Philosophia》2020,48(4):1397-1412

The terms of a mathematical problem become precise and concise if they are expressed in an appropriate notation, therefore notations are useful to mathematics. But are notations only useful, or also essential? According to prevailing view, they are not essential. Contrary to this view, this paper argues that notations are essential to mathematics, because they may play a crucial role in mathematical discovery. Specifically, since notations may consist of symbolic notations, diagrammatic notations, or a mix of symbolic and diagrammatic notations, notations may play a crucial role in mathematical discovery in different ways. Some examples are given to illustrate these ways.

  相似文献   

14.
The Indispensability Argument and Multiple Foundations for Mathematics   总被引:1,自引:0,他引:1  
One recent trend in the philosophy of mathematics has been to approach the central epistemological and metaphysical issues concerning mathematics from the perspective of the applications of mathematics to describing the world, especially within the context of empirical science. A second area of activity is where philosophy of mathematics intersects with foundational issues in mathematics, including debates over the choice of set–theoretic axioms, and over whether category theory, for example, may provide an alternative foundation for mathematics. My central claim is that these latter issues are of direct relevance to philosophical arguments connected to the applicability of mathematics. In particular, the possibility of there being distinct alternative foundations for mathematics blocks the standard argument from the indispensable role of mathematics in science to the existence of specific mathematical objects.  相似文献   

15.
W. V. Quine famously argues that though all knowledge is empirical, mathematics is entrenched relative to physics and the special sciences. Further, entrenchment accounts for the necessity of mathematics relative to these other disciplines. Michael Friedman challenges Quine’s view by appealing to historicism, the thesis that the nature of science is illuminated by taking into account its historical development. Friedman argues on historicist grounds that mathematical claims serve as principles constitutive of languages within which empirical claims in physics and the special sciences can be formulated and tested, where these mathematical claims are themselves not empirical but conventional. For Friedman, their conventional, constitutive status accounts for the necessity of mathematics relative to these other disciplines. Here I evaluate Friedman’s challenge to Quine and Quine’s likely response. I then show that though we have reason to find Friedman’s challenge successful, his positive project requires further development before we can endorse it.  相似文献   

16.
Conflicting accounts of the role of mathematics in our physical theories can be traced to two principles. Mathematics appears to be both (1) theoretically indispensable, as we have no acceptable non‐mathematical versions of our theories, and (2) metaphysically dispensable, as mathematical entities, if they existed, would lack a relevant causal role in the physical world. I offer a new account of a role for mathematics in the physical sciences that emphasizes the epistemic benefits of having mathematics around when we do science. This account successfully reconciles theoretical indispensability and metaphysical dispensability and has important consequences for both advocates and critics of indispensability arguments for platonism about mathematics.  相似文献   

17.
Abstract:  Mathematical naturalism forbids philosophical interventions in mathematical practice. This principle, strictly construed, places severe constraints on legitimate philosophizing about mathematics; it is also arguably incompatible with mathematical realism. One argument for the latter conclusion charges the realist with inability to take a truly naturalistic view of the Gödel Program in set theory. This argument founders on the disagreement among mathematicians about that program's prospects for success. It also turns out that when disagreements run this deep it is counterproductive to take too narrow a view of how philosophers of mathematics may legitimately proceed.  相似文献   

18.
In this paper I investigate how conceptual engineering applies to mathematical concepts in particular. I begin with a discussion of Waismann’s notion of open texture, and compare it to Shapiro’s modern usage of the term. Next I set out the position taken by Lakatos which sees mathematical concepts as dynamic and open to improvement and development, arguing that Waismann’s open texture applies to mathematical concepts too. With the perspective of mathematics as open-textured, I make the case that this allows us to deploy the tools of conceptual engineering in mathematics. I will examine Cappelen’s recent argument that there are no conceptual safe spaces and consider whether mathematics constitutes a counterexample. I argue that it does not, drawing on Haslanger’s distinction between manifest and operative concepts, and applying this in a novel way to set-theoretic foundations. I then set out some of the questions that need to be engaged with to establish mathematics as involving a kind of conceptual engineering. I finish with a case study of how the tools of conceptual engineering will give us a way to progress in the debate between advocates of the Universe view and the Multiverse view in set theory.  相似文献   

19.
A version of the permutation argument in the philosophy of mathematics leads to the thesis that mathematical terms, contrary to appearances, are not genuine singular terms referring to individual objects; they are purely schematic or variables. By postulating ‘ante-rem structures’, the ante-rem structuralist aims to defuse the permutation argument and retain the referentiality of mathematical terms. This paper presents two semantic problems for the ante-rem view: (1) ante-rem structures are themselves subject to the permutation argument; (2) the ante-rem structuralist fails to explain reference in a way that makes her account different to, and privileged over, that of her eliminativist rivals. Both problems undercut the motivation behind ante-rem structuralism.  相似文献   

20.
Mary Leng 《Synthese》2002,131(3):395-417
For many philosophers not automatically inclined to Platonism, the indispensability argument for the existence of mathematical objectshas provided the best (and perhaps only) evidence for mathematicalrealism. Recently, however, this argument has been subject to attack, most notably by Penelope Maddy (1992, 1997),on the grounds that its conclusions do not sit well with mathematical practice. I offer a diagnosis of what has gone wrong with the indispensability argument (I claim that mathematics is indispensable in the wrong way), and, taking my cue from Mark Colyvan's (1998) attempt to provide a Quinean account of unapplied mathematics as `recreational', suggest that, if one approaches the problem from a Quinean naturalist starting point, one must conclude that all mathematics is recreational in this way.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号