首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An automated training system was used to compare the behavior of knockout (KO) mice lacking the fragile X mental retardation protein with that of wild-type (WT) mice (C57Bl/6 strain) in the acquisition and retention of olfactory discriminations. KO and WT mice did not differ in the acquisition of a four-stage nose poke shaping procedure. In two separate experiments, mutant mice required substantially more training to acquire a series of novel olfactory discrimination problems than did control mice. The KO mice required significantly more sessions to reach criterion performance, made significantly more errors during training, and more often failed to acquire discriminations. Both KO and WT mice showed similar error patterns when learning novel discriminations and both groups showed evidence of more rapid learning of later discriminations in the problem series. Both groups showed significant long-term memory two or four weeks after training but WT and KO mice did not differ in this regard. A group of well-trained mice were given training on novel odors in sessions limited to 20–80 trials. Memory of these problems at two day delays did not differ between WT and KO mice. Tests using ethyl acetate demonstrated that WT and KO mice had similar odor detection thresholds.  相似文献   

2.
In situ hybridization histochemistry was used to assess the effect of auditory stimulation with natural contact calls on expression of NR2A and NR2B NMDA subunit mRNAs in neurons of the thalamic auditory relay nucleus ovoidalis (Ov) of a vocal learning parrot species, the budgerigar (Melopsittacus undulatus). The results showed that both the core (Ov) and ventromedial shell subdivisions (Ovm) of ovoidalis contained neurons expressing NR2A and NR2B mRNA in no-stimulation control subjects and that the distributions of neurons expressing these subunit mRNAs were very similar in both the core and shell of Ov. Contact call stimulation (5, 30 and 180 min) resulted in substantial increases of 50-60% in the number of neurons expressing NR2A and NR2B mRNAs in both the core and shell. Staining intensity, as measured by the optical density of stained somata approximately doubled compared to controls for both NR2 subunits in the 5 and 30 min conditions, but declined from 30 to 180 min. In all conditions, the density, but not staining intensity, of neurons expressing NR2B exceeded NR2A expression. Furthermore, the density of neurons expressing both subunit mRNAs in call stimulation conditions was greater in the core than in the shell despite the fact that total neuronal density was approximately 20% higher in the shell. Previous experiments have shown that call stimulation is more effective at inducing expression of the immediate early gene zenk in the Ov shell than core; however the present results do not indicate that either NR2A or NR2B mRNA expression mediates this effect since neither subunit exhibits greater expression in Ovm. Ca(++) release is needed for immediate early gene expression, however and, notably, Ovm contains large numbers of neurons containing CGRP, a peptide which has been shown to increase cytosolic Ca(++) levels.  相似文献   

3.
The delta subunit of the GABA(A) receptor (GABA(A)R) is highly expressed in the dentate gyrus of the hippocampus. Genetic deletion of this subunit reduces synaptic and extrasynaptic inhibition and decreases sensitivity to neurosteroids. This paper examines the effect of these changes on hippocampus-dependent trace fear conditioning. Compared to controls, delta knockout mice exhibited enhanced acquisition of tone and context fear. Hippocampus-independent delay conditioning was normal in these animals. These results suggest that reduced inhibition in the dentate gyrus facilitates the acquisition of trace fear conditioning. However, the enhancement in trace conditioning was only observed in female knockout mice. The sex-specificity of this effect may be a result of neuroactive steroids. These compounds vary during the estrus cycle, can increase GABAergic inhibition, and have been shown to impair hippocampus-dependent learning. We propose that activation of GABA(A)Rs by neuroactive steroids inhibits learning processes in the hippocampus. Knockouts are immune to this effect because of the reduced neurosteroid sensitivity that accompanies deletion of the delta subunit. Relationships between neurosteroids, hippocampal excitability, and memory are discussed.  相似文献   

4.
Within the amygdala, most N-methyl-D-aspartic acid (NMDA) receptors consist of NR1 subunits in combination with either NR2A or NR2B subunits. Because the particular subunit composition greatly influences the receptors' properties, we investigated the contribution of both subtypes to fear conditioning and expression. To do so, we infused the NR1/NR2B receptor antagonist CP101,606 (0.5, 1.5, or 4.5 microg/amygdala) or the NR1/NR2A-preferring antagonist NVP-AAM077 (0.075, 0.25, 0.75, or 2.5 microg/amygdala) into the amygdala prior to either fear conditioning (i.e., light-shock pairings) or fear-potentiated startle testing. CP101,606 nonmonotonically disrupted fear conditioning but did not disrupt fear expression. NVP-AAM077 dose-dependently disrupted fear conditioning as well as fear expression. The results suggest that amygdala NR1/NR2B receptors play a special role in fear memory formation, whereas NR1/NR2A receptors participate more generally in synaptic transmission.  相似文献   

5.
Plasticity in dendritic spines may underlie learning and memory. Spinophilin, a protein enriched in dendritic spines, has the properties of a scaffolding protein and is believed to regulate actin cytoskeletal dynamics affecting dendritic spine morphology. It also binds protein phosphatase-1 (PP-1), an enzyme that regulates dendritic spine physiology. In this study, we tested the role of spinophilin in conditioned taste aversion learning (CTA) using transgenic spinophilin knockout mice. CTA is a form of associative learning in which an animal rejects a food that has been paired previously with a toxic effect (e.g., a sucrose solution paired with a malaise-inducing injection of lithium chloride). Acquisition and extinction of CTA was tested in spinophilin knockout and wild-type mice using taste solutions (sucrose or sodium chloride) or flavors (Kool-Aid) paired with moderate or high doses of LiCl (0.15 M, 20 or 40 mL/kg). When sucrose or NaCl solutions were paired with a moderate dose of LiCl, spinophilin knockout mice were unable to learn a CTA. At the higher dose, knockout mice acquired a CTA but extinguished more rapidly than wild-type mice. A more salient flavor stimulus (taste plus odor) revealed similar CTA learning at both doses of LiCl in both knockouts and wild types. Sensory processing in the knockouts appeared normal because knockout mice and wild-type mice expressed identical unconditioned taste preferences in two-bottle tests, and identical lying-on-belly responses to acute LiCl. We conclude that spinophilin is a candidate molecule required for normal CTA learning.  相似文献   

6.
Through protein interactions mediated by their cytoplasmic C termini the GluN2A and GluN2B subunits of NMDA receptors (NMDARs) have a key role in the formation of NMDAR signaling complexes at excitatory synapses. Although these signaling complexes are thought to have a crucial role in NMDAR-dependent forms of synaptic plasticity such as long-term potentiation (LTP), the role of the C terminus of GluN2A in coupling NMDARs to LTP enhancing and/or suppressing signaling pathways is unclear. To address this issue we examined the induction of LTP in the hippocampal CA1 region in mice lacking the C terminus of endogenous GluN2A subunits (GluN2AΔC/ΔC). Our results show that truncation of GluN2A subunits produces robust, but highly frequency-dependent, deficits in LTP and a reduction in basal levels of extracellular signal regulated kinase 2 (ERK2) activation and phosphorylation of AMPA receptor GluA1 subunits at a protein kinase A site (serine 845). Consistent with the notion that these signaling deficits contribute to the deficits in LTP in GluN2AΔC/ΔC mice, activating ERK2 and increasing GluA1 S845 phosphorylation through activation of β-adrenergic receptors rescued the induction of LTP in these mutants. Together, our results indicate that the capacity of excitatory synapses to undergo plasticity in response to different patterns of activity is dependent on the coupling of specific signaling pathways to the intracellular domains of the NMDARs and that abnormal plasticity resulting from mutations in NMDARs can be reduced by activation of key neuromodulatory transmitter receptors that engage converging signaling pathways.  相似文献   

7.
Memory consolidation is defined temporally based on pharmacological interventions such as inhibitors of mRNA translation (molecular consolidation) or post-acquisition deactivation of specific brain regions (systems level consolidation). However, the relationship between molecular and systems consolidation are poorly understood. Molecular consolidation mechanisms involved in translation initiation and elongation have previously been studied in the cortex using taste-learning paradigms. For example, the levels of phosphorylation of eukaryotic elongation factor 2 (eEF2) were found to be correlated with taste learning in the gustatory cortex (GC), minutes following learning. In order to isolate the role of the eEF2 phosphorylation state at Thr-56 in both molecular and system consolidation, we analyzed cortical-dependent taste learning in eEF2K (the only known kinase for eEF2) ki mice, which exhibit reduced levels of eEF2 phosphorylation but normal levels of eEF2 and eEF2K. These mice exhibit clear attenuation of cortical-dependent associative, but not of incidental, taste learning. In order to gain a better understanding of the underlying mechanisms, we compared brain activity as measured by MEMRI (manganese-enhanced magnetic resonance imaging) between eEF2K ki mice and WT mice during conditioned taste aversion (CTA) learning and observed clear differences between the two but saw no differences under basal conditions. Our results demonstrate that adequate levels of phosphorylation of eEF2 are essential for cortical-dependent associative learning and suggest that malfunction of memory processing at the systems level underlies this associative memory impairment.  相似文献   

8.
9.
Yeshurun and Levy (2003) reported that temporal discrimination performance of a visual stimulus benefits when spatial attention is oriented away from its location. In the present study, we investigated whether this negative influence of attention on temporal discrimination performance is restricted to transient spatial attention or might generalize to other paradigms of attention. We employed the attentional blink (AB) paradigm and required either a spatial (Experiment 1) or a temporal discrimination task (Experiment 2). The results of both experiments revealed a performance decrement if attention was temporally unavailable during the AB and a recovery with increasing attentional availability. Thus, contrary to the results of Yeshurun and Levy, the absence of attention decreased temporal discrimination performance in this paradigm. We hypothesize that attention which operates at different processing levels might exert differential effects on temporal stimulus processing.  相似文献   

10.
Studies have shown that N-methyl-D-aspartate (NMDA) receptors play a critical role in pain processing at different levels of the central nervous system. In this study, we used female adult Wistar rats to examine the effects of antagonizing the NR2B subunit of the NMDA receptor in phasic and tonic pain processes. All the rats underwent stereotaxic surgery for cortical cannula implantation and after at least one week of recovery, rats performed behavioral tests. For evaluating the effects of drugs on motor coordination rats were tested in the rotarod apparatus. Moreover, rats were evaluated in the paw withdrawal latency (PWL) to a noxious thermal stimulus. Furthermore, rats were tested in the formalin-pain test. Rats that received the NR2B antagonist Ro 25-6981 before and after formalin injection showed significantly reduced pain responses in the formalin test, as compared with female control rats (p<0.05). In contrast, no differences among groups were found in the phasic pain test (Hargreaves) and the rotarod test. Taken together, these results suggest that cortical antagonism of the NR2B subunit of NMDA receptors is able to reduce inflammatory pain levels not only before, but after the formalin injection in females at different phases of the estrous cycle.  相似文献   

11.
We have previously reported that sound sequence discrimination learning requires cholinergic inputs to the auditory cortex (AC) in rats. In that study, reward was used for motivating discrimination behavior in rats. Therefore, dopaminergic inputs mediating reward signals may have an important role in the learning. We tested the possibility in the present study. Rats were trained to discriminate sequences of two sound components, and licking behavior in response to one of the two sequences was rewarded with water. To identify the dopaminergic inputs responsible for the learning, dopaminergic afferents to the AC were lesioned with local injection of 6-hydroxydopamine (6-OHDA). The injection attenuated sound sequence discrimination learning, while it had no effect on discrimination between the sound components of the sequence stimuli. Local injection of 6-OHDA into the nucleus accumbens attenuated sound discrimination learning. However, not only discrimination learning of sound sequence but also that of the sound components were impaired. SCH23390 (0.2 mg/kg, i.p.), a D1 receptor antagonist, had no effect on sound sequence discrimination learning, while it attenuated the licking behavior to unfamiliar stimuli. Haloperidol (0.5 mg/kg, i.p.), a D2 family antagonist, attenuated sound sequence discrimination learning, while it had no clear suppressive effect on discrimination of two different sound components and licking. These results suggest that D2 family receptors activated by dopaminergic inputs to the AC are required for sound sequence discrimination learning.  相似文献   

12.
gamma-L-glutamyl-L-aspartate (gamma-LGLA), which interacts with NMDA receptors, has been shown to impair retention of an active avoidance task in mice. Here, we specified the behavioral effects of gamma-LGLA on acquisition and retention of appetitive nondelayed visual discrimination tasks. Three experiments were conducted: the peptide (0.25 and 2.5 microM/kg/25 ml. ip) was administered 3 min after each of the first six sessions of either original learning, reversal 1 or reversal 3. gamma-LGLA affected acquisition of the original task and of the first reversal, as revealed by an absence of improvement on initial sessions and an increased number of sessions to reach criterion fixed at 7 of 10 correct choices on three consecutive sessions. This deficit did not result from an action of the peptide on position habits (repetition of spatial choices) nor on motivational processes, suggesting a specific interference of gamma-LGLA with acquisition and memorization of the visual rule. In contrast, gamma-LGLA had no effect on acquisition of the third reversal, in which the positively reinforced visual stimulus was identical to that used on the first reversal. These results show that the behavioral deficits of gamma-LGLA, which had previously been demonstrated in an aversive task, can be generalized to appetitive tasks based on acquisition of a new rule.  相似文献   

13.
A theory for discrimination learning which incorporates the concept of an observing response is presented. The theory is developed in detail for experimental procedures in which two stimuli are employed and two responses are available to the subject. Applications of the model to cases involving probabilistic and nonprobabilistic schedules of reinforcement are considered; some predictions are derived and compared with experimental results.This research was supported by a grant from the National Science Foundation.  相似文献   

14.
15.
The requirement for de novo protein synthesis during multiple forms of learning, memory and behavior is well-established; however, we are only beginning to uncover the regulatory mechanisms that govern this process. In order to determine how translation initiation is regulated during neuroplasticity we engineered mutant C57Bl/6J mice that lack the translation repressor eukaryotic initiation factor 4E-binding protein 2 (4E-BP2) and have previously demonstrated that 4E-BP2 plays a critical role in hippocampus-dependent synaptic plasticity and memory. Herein, we examined the 4E-BP2 knockout mice in a battery of paradigms to address motor activity and motor skill learning, anxiety and social dominance behaviors, working memory and conditioned taste aversion. We found that the 4E-BP2 knockout mice demonstrated altered activity in the rotating rod test, light/dark exploration test, spontaneous alternation T-maze and conditioned taste aversion test. The information gained from these studies builds a solid foundation for future studies on the specific role of 4E-BP2 in various types of behavior, and for a broader, more detailed examination of the mechanisms of translational control in the brain.  相似文献   

16.
The serotonin (5-HT)-3A receptor has been localized in limbic and brainstem structures that regulate hypothalamic--pituitary--adrenal (HPA) activity. We previously showed that 5-HT-3A receptor knock-out (KO) male mice displayed lower ACTH responses to acute restraint or lipopolysaccharide administration compared to age-matched wild-type (WT) males. In the present study, we found that pituitary-adrenal responses to acute stress were not different in female WT and KO mice. Furthermore, we examined the role of the 5-HT-3A receptor in regulation of chronic stress-induced HPA activity in both male and female WT and KO mice. The results show that ACTH, but not corticosterone, responses to novel restraint are lower in chronically cold stressed females compared to non-stressed control females but no effect of 5-HT-3A receptor deletion was observed. In contrast, male mice showed facilitated responses to novel restraint after chronic cold stress and this facilitation produced sex differences in ACTH responses to novel restraint between male and female chronically stressed KO mice. Together, these results indicate that there are sex differences in HPA responses to novel restraint in chronically stressed mice and these differences are partly related to 5-HT-3A receptor function.  相似文献   

17.
N‐Methyl‐D ‐aspartate (NMDA) receptor antagonists are perspective candidates for medication development for a number of diseases/states that are associated with increased aggressiveness (e.g., opioid withdrawal). The prototypic NMDA receptor antagonist phencyclidine (PCP) itself is a widely abused substance and is known to elevate levels of aggression in drug users. The present study was aimed at testing several drugs that share with PCP the ability to block NMDA receptor–associated channel. The resident‐intruder procedure was used to assess drug effects on aggressive behavior in isolated male mice. Resident aggressive mice were administered NMDA channel blockers (PCP; 0.3–10 mg/kg), dizocilpine (MK‐801; 0.01–0.3 mg/kg), memantine (1–30 mg/kg), and MRZ 2/579 (0.1–5.6 mg/kg). The competitive NMDA receptor antagonist D CPPene (0.1–5.6 mg/kg) was also tested as a compound representing an alternative approach to reduce activity of NMDA receptor complex. PCP, dizocilpine, and memantine inhibited expression of aggressive behaviors only at doses that produced ataxia. The novel channel blocker MRZ 2/579 also produced ataxia at the highest dose level but failed to affect aggressiveness. Reduction in aggression with a corresponding increase in sociability was observed after administration of D ‐CPPene. Overall, the present results suggest that NMDA receptor channel blockers do not exert selective effects on aggressive behavior. Aggr. Behav. 25:381–396, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

18.
Four pigeons received conditional discrimination training in which reinforcement contingencies were related to specific combinations of color and form, but were unrelated to either color or form considered separately. During discrete-trial training, each response in the presence of two of four color-form displays produced reinforcement and terminated the trial; responding to the other two displays was never reinforced, and each such response prolonged the particular trial on which it occurred. Subsequently, the subjects received multiple-schedule training in which responding to either of the displays previously associated with reinforcement was now reinforced on a variable-interval schedule, and extinction was the schedule again correlated with the other two displays. After differential responding to the stimuli was clearly evident, intensity of the combination displays was changed in subsequent training sessions. Complex stimulus control was generally maintained across variation in intensity, although there were temporary disruptions in performance associated with onset of some of the intensity changes. Finally, a component-stimulus test revealed considerably more responding to the forms than to the colors.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号